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Abstract: Performing cyclic voltamme-
try at scan rates into the megavolt per
second range allows the exploration of
the nanosecond time scale as well as the
creation of nanometric diffusion layers
adjacent to the electrode surface. This
latter property is used here to adjust
precisely the diffusion layer width within
the outer shell of a fourth-generation
dendrimer molecule decorated by 64
[RuII(tpy)2] redox centers (tpy� terpyr-
idine). Thus the shape of the dendrimer
molecule adsorbed onto the ultrami-
croelectrode surface can be explored
voltammetrically in a way reminiscent of
an analysis with a nanometric micro-

tome. The quantitative analysis devel-
oped here applied to the experimental
voltammograms demonstrates that in
agreement with previous scanning tun-
neling microscopy (STM) studies the
adsorbed dendrimer molecules are no
more spherical as they are in solution
but resemble more closely hemispheres
resting onto the electrode surface on
their diametrical planes. The same quan-
titative analysis gives access to the

apparent diffusion coefficient featuring
electron hopping between the [RuII/
RuIII(tpy)2] redox centers distributed
on the dendrimer surface. Based on the
electron hopping rate constant thus
measured and on a Smoluchowski-type
model developed here to take into
account viscosity effects during the dis-
placement of the [RuII/RuIII(tpy)2] redox
centers around their equilibrium posi-
tions, it is shown that the [RuII/RuIII-
(tpy)2] redox centers are extremely la-
bile in their potential wells so that they
may cross-talk considerably more easily
than they would do in solution at an
equivalent concentration.
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Introduction

In electrochemical kinetics, the time scale q of an experiment
is given by the duration of diffusion of the molecules under
investigation from the electrode surface to the extremity of
the diffusion layer. In typical electrokinetic experiments, this
property is used to adjust the electrochemical time scale to the
half-life t1/2 of a chemical event to be measured. The interplay
between q and t1/2 (i. e. , q� t1/2 , q� t1/2 , and q� t1/2) gives

rise to distinct and characteristic responses which has made
for the widespread use of such techniques.[1]

In cyclic voltammetry, changing the scan rate v allows one
to control the thickness of the diffusion layer (d/ (DRT/Fv)1/2),
so that the duration of diffusion, q�RT/Fv may be adjusted at
will, at least within the experimental limits within which the
scan rate may be varied. As v becomes large, the observed
response is increasingly affected by the cell�s time constant
and by ohmic drops within the solution.[2] Both of these effects
can be minimized by performing electrochemistry at disk
ultramicroelectrodes since, in transient voltammetry, both of
the above-mentioned effects are proportional to the electrode
radius.[2] Thus, exploration of time scales below a microsecond
requires additional diminution of their contributions. We have
shown that electronic compensation of the cell resistance,
through positive feedback, allows the recording of almost
undistorted voltammograms (by using disk ultramicroelectr-
odes) for sweep rates in the MVsÿ1 regime.[3, 4] Accessing this
range of scan rates allows the building up of diffusion layers of
a few nanometers in thickness near an electrode surface, and
therefore access to the nanosecond time scale in electro-
chemistry.[5]
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It is also evident that performing voltammetry in the
megavolt-per-second range allows one to develop diffusion
layers over an electroactive nanometric object adsorbed onto
an electrode surface. In such a case and for sufficiently slow
scan rates such that the diffusion layer d/ (DRT/Fv)1/2

extends much farther than the dimension l of the nanometric
object, all the electroactive sites borne by the object are
electrolyzed during a single voltammetric scan so that the
voltammetric response is that anticipated for a thin adsorbed
layer of electroactive material.[6] Conversely, for very fast
sweep rates such that d/ (DRT/Fv)1/2� l, one expects to see a
semi-infinite diffusion response, since the physical extremity
of the object is not reached by the diffusion layer within the
time elapsed during one voltammetric scan. Furthermore, the
diffusional voltammetric pattern observed reflects, necessa-
rily, the shape of the space in which diffusion occurs.[2] Thus,
one should be able to analyze the shape and dimensions of a
nanometric object bearing redox sites adsorbed onto a
metallic surface, through the voltammetric patterns observed
upon varying the scan rate to values in the megavolt-per-
second range, or more generally, when the diffusion layer
(controlled by the sweep rate) is smaller than the dimensions
of the object under study.

Herein, we illustrate this concept, both theoretically and
experimentally, with adsorbed redox-active dendrimers of
nanometric dimensions.[6±8] We have previously shown that
globular dendrimers bearing redox sites on their outer surface
adsorb strongly onto electrode surfaces.[6±13] The adsorptive
thermodynamics and kinetics have been extensively charac-
terized by cyclic voltammetry at slow sweep rates coupled to
the quartz microbalance (EQCM),[6] as well as by scanning
tunneling microscopy (STM).[7, 14] However, STM images only
provide the structure of the material exposed to the solution
side, but not the contact angle which is hidden under the
globular structure exposed to the solution. In this respect, we
are interested in examining if a precise analysis of the
voltammetric pattern as a function of scan rate carries
sufficient information to perform such a shape reconstruction.

On the other hand, being able to restrict diffusion within a
single dendrimer structure is expected to allow the determi-
nation of the (apparent) diffusion coefficient corresponding
to the propagation of the electrochemical perturbation along
its surface. Since the redox centers are physically bound to the
radial molecular branches of the dendritic structure, they are
not expected to be able to diffuse in the classical Einstein ±
Schmoluchowski sense. In fact, a similar problem was
addressed several years ago for diffusion in macroscopic
polymeric films containing covalently linked redox sites.[15±22]

In this context, an apparent diffusion coefficient (Dapp) is
observed, which corresponds to an apparent displacement of
redox centers by electron hoping between them. Thus, the
electrochemical perturbation may propagate along the struc-
ture without implying any real displacement of each redox site
(at least in terms of their average displacement). Therefore,
the measurement of such an apparent diffusion coefficient
along the electroactive outer shell of a dendrimer carries
information on the degree of cross talk between groups
located at the end of the dendrimer chains.[21, 22] Here, by
construction, we examine such redox communication. How-

ever, as will be made evident in the following, the commu-
nication depends on two factors independent of the chemical
nature of the cross-talk between adjacent sites. One relates to
the rate constant characterizing the chemical exchange
between two sites, and is, ultimately, controlled by the rate
constant characterizing the same exchange in a bulk solution
of sites. The other characterizes the degree of communication
between adjacent sites and is therefore expected to be
intrinsic to the dendrimer�s inner structure and thus rather
independent of the chemical reaction leading to the cross-
exchange of status between two adjacent sites. In view of the
expected important properties of redox-active dendrimers in
catalysis,[23±35] accessing such information appears as a val-
uable and important challenge. It also has important con-
ceptual interest.

Theory

We consider that the dendrimer adsorbs onto the electrode
surface as a spherical globular structure since this is what is
apparent from STM images of these dendrimers.[7] These
materials adsorb so strongly to electrode surfaces at very low
(nanomolar) bulk concentrations in acetonitrile that any
motion (viz. , rotation or rotational oscillation) is ruled out.[6±8]

Since the monomeric [Ru(tpy)2]2� ion is quite soluble in
acetonitrile, the strong adsorption is a clear indication of the
strong preference of the dendrimer chains, linking the redox
sites to the dendrimer center, for the electrode surface relative
to the solvent molecules. Adsorption to high coverage values
creates a steric problem, so it is presumed that upon
adsorbing, the dendrimer molecule optimizes its configura-
tion so that the negative energy of adsorption (over)compen-
sates for the positive steric energy.[8] This is expected to result
in a distortion of the dendrimer shape with respect to the
spherical shape it retains in solution.[36±38] Similarly, since
access to the solvent molecules in between the chains has to be
minimized for the entire structure exposed to the solution, it is
expected that the average cone angle, occupied by one redox
site, seen from the dendrimer center, is rather constant. In this
perspective, the adsorbed dendrimer should resemble a
truncated sphere of radius R0 resting on the electrode surface
so that the truncated part of the sphere is confined within the
cone of half-angle f0 (see Figure 1 a). This angle is imposed by

Figure 1. a) Schematic representation of a dendrimer adsorbed onto the
electrode surface in which the definitions of f0 , R0 , and f are denoted. The
redox centers are considered to move only in the gray shell around the
inner core of the dendrimer. b) Schematic representation of the adsorbed
dendrimer for f0� 1.2 rd. In b) the dashed circle represents the size of the
same dendrimer free in solution, assuming that the two inner volumes are
equal.
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the compensation of positive (steric) and negative (adsorp-
tion) energies. The N0 redox sites are disposed within a
spherical shell at the surface of this globule, of thickness d,
equal to the diameter of the spherical volume occupied by one
redox site. Since N0 redox sites are distributed on a surface
area 2pR2

0(1� cosf0), their molecular surface concentration
(in moles per unit of surface area of the dendrimer outer shell)
is G0�N0/[2pR2

0(1� cosf0)], so that their average molecular
concentration (in moles per unit of volume) is C0�G0/d,
within the spherical shell in which they are distributed.

In the experiments performed in this study, Nd�pr0
2GdNA

redox dendrimers are adsorbed on a disk electrode of radius r0

with a surface concentration Gd (where NA is Avogadro�s
constant and Gd is expressed in moles per unit of surface area
of the electrode). However, each dendrimer behaves inde-
pendently since they are adsorbed too far apart to commu-
nicate through electron transfer,[7] so that the voltammograms
observed ought to be the simple superposition of each
individual voltammogram. Whenever the distribution of
shapes is extremely narrow (vide infra), each dendrimer
should behave identically so that the voltammetric current
would be expected to be Nd times that of one dendrimer. For
this reason, hereafter we consider only a single dendrimer
molecule.

Apparent diffusion by electron hopping within a spherical
shell of redox sites : The following model is adapted from that
derived previously for planar diffusion through electron
hopping in electroactive polymers,[15±22, 39, 40] so its only partic-
ularities deal with the specific geometry of the system at hand.
In the outer shell of the dendrimer (see Figure 1) of thickness
d, each redox site may be present under two states A and B,
which are related through the exchange of n electrons
[Eq. (1)].

Asite1� ne>Bsite1 (1)

We note that GA�CAd is the molecular surfacic concen-
tration of species A, so that the surfacic molecular concen-
tration of species B is GB�G0ÿGA� (C0ÿCA)d at the same
location. Let us then consider two rings of the spherical shell,
parallel to the electrode surface and located around the
latitude f (see Figure 1a). The redox sites contained in each of
these two adjacent rings may exchange n electrons with those
of the neighboring ring [Eq. (2)].

Asite1�Bsite2>Bsite1�Asite2 (2)

The rate constant k of this electron exchange is identical for
each half-reaction (2) owing to the symmetry. Indeed, since
the redox sites are distributed over a shell of redox sites that is
surrounded externally by the electrolyte at high concentra-
tion, we may neglect electric field contributions due to the site
exchanges so that DG0� 0 for Equation (2).[41] In other words,
we assume here that the concentrations (0.6m in the experi-
ments reported here, vide infra) and mobilities of the inert
supporting electrolyte ions in the surrounding solution are
sufficiently large to maintain electroneutrality at each in-
stant.[41] Furthermore, under such highly concentrated sup-

porting electrolyte concentrations conditions the double layer
thickness is of a few angstroms only so that the charges are
effectively screened.[1] Under these conditions, the apparent
movement of A from site 1 to site 2 as featured in
Equation (2) is controlled only by the rate of diffusion by
electron hoping.[42] Note that we assume here that the rate of
electron tunneling from centers distributed on the outer shell
of the dendrimer and the electrode is negligible in view of the
electron hopping process (vide infra).

Let us then consider two spherical rings of thickness R0df

located around the latitude f (see Figure 1a), of elementary
volumes 2pR0(sinf)ddf, and separated by the surface area
a� 2pR0(sinf)d normal to the spherical shell. During the time
interval dt, the apparent flux of sites A along the f coordinate,
JA,f, resulting from the net effect of the forward and backward
electron exchanges in Equation (2) is given in Equation (3),
where dNA is the net number of moles of sites A created in the
volume comprised between f and f� df during dt.

JA,f�dNA/(adt) (3)

dNA is then given by Equation (4).

dNA

�aR0df��kdt
�

CA fÿ df

2

� �
CB f� df

2

� �
ÿCA f� df

2

� �
CB fÿ df

2

� ��
(4)

Since CB� (C0ÿCA), development of Equation (4), gives
rise to the net flux [Eq. (5)] and [Eq. (6)].

JA,f�
dNA

�adt��kC0

�
CA fÿ df

2

� �
ÿCA f� df

2

� ��
R0df (5)

that is:

JA,f�ÿkC0(R0df)2

�
1

R0

� �
@CA

@f

� �
f

�
�ÿkC0(R0df)2gradf CA (6)

In Equation (6) gradf CA is the projection of the gradient of
CA along the f spherical coordinate. kC0(R0df)2 has the
dimensions ([L2][Tÿ1]) and the physical meaning of a diffusion
coefficient in the Einstein ± Schmoluchowski sense. Indeed, it
corresponds to an equivalent displacement of A particles over
the length R0df during the time interval dt� 1/(2kC0).
Therefore, Equation (6) shows that the electron exchange in
Equation (2) amounts to an equivalent diffusion of A sites
over the spherical shell with an equivalent diffusion coef-
ficient (note that C0�G0/d�N0/[2pR0

2d(1� cosf0)];
Eq. (7)).[15±22, 39, 40, 42]

Dhop� kC0(R0df)2�kG0

�R0df�2
d

� N0

2p

� ��k�df�2=d�
1 � cosf0

(7)

Meaning of Dhop within a spherical shell of redox sites : A
single site occupies an average surface area dasite�
2pR0

2(1�cosf0)/N0 of the spherical shell, which corresponds
to an average angular distance dfsite� 2arcos[1ÿ (1�cosf0)/
N0] between the centers of two sites, that is, to dfsite� 23/2[(1�
cosf0)/N0]1/2 to better than 3 % for N0 larger than ten. In
practice, in order to allow the propagation of the electro-
chemical perturbation, one must have df� dfsite in Equa-
tion (7) so that Equation (8) is valid.

Dhop� (4/p)k/d (8)
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In Equation (8) k is the apparent rate constant of electron
transfer between two sites located at an average distance
R0dfsite and which results in the propagation of the electrons
in the �df direction. When N0 is sufficiently large for R0dfsite

to be close to d, that is, when N0�Nmax� 8(1�cosf0)(R0/d)2,
all the sites are in close contact. Then, k� ksoln

act /6 NA, where
ksoln

act is the molar isotopic activation rate constant determined
for the same redox centers in a homogeneous bulk solution
giving rise to a similar environment of the redox centers. The
factor 1/6 is introduced because in a three-dimensional bulk
solution reactions may occur along the two directions of the
three coordinates while here, no reaction is feasible along the
radial spherical coordinate (that is, �dr), whereas electron
transfers occurring along the longitudinal coordinate (that is,
�dq) or along the negative direction of the f coordinate do
not contribute to the flux evaluated above. Thus only one
event over the six feasible in solution is to be retained, so that
Equation (9) is valid.

Dhop� (Dhop)max� (2/3pdNA)ksoln
act (9)

R0dfsite� d(Nmax/N0)1/2 provided that N0 is larger than about
ten as mentioned above. Thus, when N0<Nmax, in their
equilibrium location, the sites exchanging electrons are
separated by a distance that exceeds their close contact
center-to-center distance. As a result, since the sites are
assumed be pinned at their equilibrium location on the
spherical shell, the rate of electron transfer decreases relative
to the above value because of the smaller overlap, between
their orbitals, during the very act of electron transfer. A
precise evaluation of the ensuing decay of k would require
quantum calculations which are beyond our purpose and
scope. However, several studies on long-range electron trans-
fer point out that under such conditions, k drops exponentially
with the distance d#�R0dfsiteÿ d� d[(Nmax/N0)1/2ÿ 1] be-
tween the two centers at the transition state [Eq. (10)].[43±45]

k�kpin� (ksoln
act /6NA)exp(ÿld#)� (ksoln

act /6NA)exp{ÿ ld[(Nmax/N0)1/2ÿ 1]} (10)

In Equation (10) l is the attenuation factor per unit of
distance. This is generally on average 1 �ÿ1, that is,
10 nmÿ1,[44, 45] and larger than 0.5 �ÿ1, that is, 5 nmÿ1, for
nonconducting linkers. It then follows that Equation (11) is
valid.

Dhop� (Dhop)pin� (Dhop)maxexp{ÿ ld[(Nmax/N0)1/2ÿ 1]} (11)

Equation (9), where (Dhop)max is defined, applies only when
the sites are pinned at their equilibrium position on the
spherical shell. However, they may experience fluctuating
displacements from their equilibrium position, due to partial
flexibility of their linkers. In doing so, they may become
closer, and exchange an electron, faster than predicted by
Equation (10). However, this is done by increasing the site
potential energy in its potential well centered at its equili-
brium position. If one assumes that the sites may sample their
individual potential wells much faster than the rate of electron
transfer, that is, that their potential well is populated with a

Boltzmann distribution, the overall rate constant is given by
Equation (12).

k�
�

ksoln
act �W A ÿW B�

6 NA

�
exp[ÿl(R0dfsiteÿ dÿ xA ÿ xB�

�
expÿ

��W A �W B�
kBT

�
(12)

In Equation (12), xA and xB are the displacements of each
site A and B from their equilibrium position at the very
moment of electron transfer. WA and WB are the free energies
due to the displacements xA and xB of either site in their
respective potential wells, and ksoln

act (WAÿWB� is the solution
activation rate constant at the driving force DG#�WAÿWB

which prevails at the moment of electron transfer (kB is the
Boltzmann constant). Since the orbital coupling is maximized
when WA�WB, that is, xA�ÿxB, in the following we will
examine only this situation which corresponds to an antisym-
metric displacement of each site. Then Equation (12) be-
comes Equation (13).

k(x#)� kpinexp(2lx#)exp[ÿ2W(x#)/kBT] (13)

In Equation (13) x# is the common value of the displace-
ments. The first exponential term increases with x#, while the
second one decreases because W#(x#) increases. This shows
that k passes through a maximum when x# varies between 0
(each site being at its equilibrium position) to xmax�
(R0dfsiteÿ d)/2 (each site being in close contact). The position
of this maximum depends on l as well as on the potential
energy W(x). To evaluate this maximum, let us assume that
the potential wells of each site are harmonic with a strength
constant k, that is, that W(x)� kx2/2. The optimum value of x#,
xopt

# , corresponds then to dk(x#)/dx#� 0, that is, to Equa-
tion (14), whenever xopt

# � xmax, that is for 2 lkBT/k�
(R0dfsiteÿ d)� d[(Nmax/N0)1/2ÿ 1], or to xopt

# � xmax� d[(Nmax/
N0)1/2ÿ 1]/2 in the reverse situation.

xopt
# � lkBT/k (14)

One then obtains Equation (15).

k(xopt
# )� kmaxexp[ÿ (kd2/4kBT)[(Nmax/N0)1/2ÿ 1]2] (15)

This can be converted into Equation (16) when N0 �Nmax/
(1�2lkBT/kd)2, that is, at large coverage of redox sites.

(Dhop)opt� (Dhop)maxexp[ÿ (kd2/4kBT)[(Nmax/N0)1/2ÿ 1]2] (16)

Alternatively, one obtains [Eq. (17)].

k(xopt
# )� kpinexp(l2kBT/k) (17)

This can be converted to Equation (18) when N0�Nmax/
(1� 2lkBT/kd)2, that is at low coverage of redox sites.

(Dhop)opt� (Dhop)maxexp{ÿ (l2kBT/k)[(kd/lkBT)[(Nmax/N0)1/2ÿ 1]ÿ 1]} (18)

Thus, the value of Dhop at the optimum distance depends on
two dimensionless parameters, l2kBT/k, and s� (kd/
2lkBT)[(Nmax/N0)1/2ÿ 1]. Indeed, Equations (16) and (18)
may be rewritten as a function of these parameters in the
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form of Equation (19) when s� 1, that is, when N0�Nmax/
(1� 2lkBT/kd)2, that is, at large coverage of redox sites.

Dhop� (Dhop)maxexp[ÿ (l2kBT/k)s2] (19)

Alternatively, it may be rewritten in the form of Equa-
tion (20) when s� 1, that is, N0�Nmax/(1� 2lkBT/kd)2, that is
at low coverage of redox sites.

Dhop� (Dhop)maxexp[ÿ (l2kBT/k)(2sÿ 1) (20)

As noted in Figure 2, these two functions join without
discontinuity at s� 1, so that the variations of Dhop with s are
continuous despite the two different formulations. Further-

Figure 2. Variations of Dhop/(Dhop)max as a function of s [Eqs. (19) or (20)]
(see text) for different values of l2kBT/k. From top to bottom, l2kBT/k� 0.1,
0.2, 0.5, 1, 2, 5, 10, 100, and 1000.

more, these equations encompass the entire range of possi-
bilities considered up to here. Indeed, when s! 0, that is,
when N0!Nmax, Equation (19) shows that Dhop! (Dhop)max

[Eq. (9)]. Note that the same also occurs when (l2kBT/k)s2!
0, that is, whenever the sites are sufficiently loose around their
equilibrium positions that their displacements, in their
potential wells over the distance (R0dfsiteÿ d) required for
performing an electron transfer at k� ksoln

act /6, do not introduce
any appreciable energetic cost. In the converse situation, that
is, when s!1 , either because N0�Nmax and/or because k!
1 , that is, when the redox sites are very diluted on the
spherical shell and rigidly pinned at their equilibrium position,
Equation (20) shows that Dhop! (Dhop)pin [Eq. (11)]. In other
words, Equations (19) and (20) describe any situation which
may arise within the framework considered up to here
provided that one assumes that percolation[21, 22] is not
significant and that the sites experience a Boltzmann distri-
bution in their potential wells independent of the rate of
electron transfer.

To evaluate Dhop in Equations (19) and (20), we assume that
the sites are in thermal equilibrium in their potential wells.
This implies that the rate of population of the different energy
levels by the redox sites in their potential wells is infinitely
large relative to the overall rate of electron transfer at the
optimum value, x#. When this is not the case, the rate of
viscous displacement of the sites in their wells may become
the limiting step.[46] To evaluate this situation, we proceed as
follows. First, we define a pseudo-particle composed of a pair
of reacting A and B sites, shifted respectively by xA and xB

from their equilibrium positions in two adjacent potential
wells. For simplification of the following derivations, we
impose again a condition of anti-symmetry for the two
displacements (that is, jxA j�j xB j� x) although in reality
these are independent variables. By doing so we suppress the
possible occurrence of percolation.[21, 22] Let G(x) be the
surfacic concentration of this pseudo-particle {A ´´´ B,x}.
Then, the overall rate of electron transfer is given by
Equation (21) where N is the number of pseudo-particles,
and x# is the location where the electron transfer takes place at
a rate constant k#.

dN/dt�ÿk#G(x#)/d (21)

The rate constant k# is given by Equation (22).

k#�ksoln
act exp[ÿl(R0dfsiteÿdÿ 2x#)] (22)

We now need to evaluate x#. When x varies, the chemical
potential of the pseudo-particle varies according to Equa-
tion (23).

m� m0�kBTlnG(x)�kx2 (23)

This chemical potential corresponds to a force F� dm/dx
applied to the pseudo-particle. Denoting hS as the surfacic
kinematic viscosity of the particle in its potential well, and
assuming complete viscous dissipation of energy, we calculate
the local velocity of the particle to be V(x)�F(x)/(4phS), so
that its flux j(x)�G(x)V(x)/d is given by Equation (24).

j(x)� (kBT/4phSd)[dG(x)/dx� 2(k/kBT)xG(x)] (24)

The reaction occurring at x� x# imposes a steady-state flux
regime, so that (2pxd)j(x) is independent of x and equal to
(2px#d)j(x#), which is imposed by the rate of electron transfer
reaction that takes place at x# according to Equation (25), so
that j(x)�ÿk#G(x#)/(2pxd2).[46, 47]

dN/dt�ÿk#G(x#)/d� (2px#d)j(x#)� (2pxd)j(x) (25)

Taking this condition into account, the integration of
Equation (24) shows that the rate of electron transfer defined
with respect to the surfacic concentrations at x� 0, that is, by
dN/dt�ÿkap�G(x� 0)/d, occurs with an apparent rate con-
stant kap given by Equation (26).

kap
ÿ1� [k#exp(kx#2/kBT)]ÿ1� (2hS/kBTd)

Zx=
0

exp(kx2/kBT)(dx/x) (26)

As expected, the formulation in Equation (26) is very
reminiscent of the Debye ± Schmoluchowski ± Noyes formu-
lation,[46±48] with the equivalent of the so-called diffusion limit
rate constant being in this case given by Equation (27).

kvisc(x#)�kBTd/{2hS

Zx=�k=kB T�1=2

0

[exp(u2)/u]du} (27)

Therefore, using Equation (9), and by considering for the
simplification of the following presentation that most of the
sites are located near the minima of their potential wells, we
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finally obtain Equation (28) by considering only one sixth of
the events (vide supra).

1/Dhop� 1/Dhop
#� 1/Dvisc

# (28)

Here Dhop
# is the activation-controlled contribution to Dhop

[Eq. (29)] and Dvisc
# is the viscous-controlled contribution to

Dhop [Eq. (30)].

Dhop
#� (Dhop)maxexp{ÿ ld[(Nmax/N0)1/2ÿ 1]}exp[2lx#ÿkx#2/kBT] (29)

Dvisc
#� kBT/{3phS

Zx=�k=kB T�1=2

0

[exp(u2)/u]du} (30)

Equation (28) may be rewritten in the form of Equa-
tion (31).

Dhop� (Dhop)pin/{exp(ÿ2lx# � kx#2/kBT)�W

Zx=�k=kBT�1=2

0

[exp(u2)/u]du} (31)

Here W� 3phS(Dhop)pin/kBT and (Dhop)pin , defined in Equa-
tion (11), corresponds to the value of Dhop when the sites are
pinned at their equilibrium position. The largest value of Dhop

corresponds to the value (x#)opt of x# that minimizes the
denominator of Equation (31) provided this is less than or
equal to xmax� d[(Nmax/N0)1/2ÿ 1]/2, the maximum value of x.
As noted before [Eqs. (19) and (20)], when the mathematical
solution (x#)opt becomes larger than xmax, the largest value of
Dhop corresponds to (x#)opt� xmax. It follows that (x#)opt�
Max{0,Min[z(lkBT/k),xmax]}, where z is the largest solution
of Equation (32) and z� 2l2kBT/k.

z(1ÿ z)� (W/z)exp(zz) (32)

When the right-hand-side term of Equation (32) is negli-
gible, one obtains z� 1, which features the solution found
above by neglecting the role of the viscosity. Then, the
optimum value of Dhop is given by Equation (19) or (20)
depending on the value of s. This requires that W(expz)/z! 0
when s� 1, or (W/z)exp(2lxmax)! 0 when s� 1. When either
condition is not fulfilled, z is smaller than unity or than xmax,
which shows that Dhop is smaller than predicted by Equa-
tion (19) or (20), respectively. In other words, the viscosity
prevents the sites from reaching the optimum electron
transfer point at a sufficiently fast rate. For a given value of
z, whenever W is larger than a threshold value Wmax(z)�
(1ÿ 2f)exp(ÿxf) where f� [2� x� (4� x2)1/2]/(2x), Equa-
tion (32) has no solution so that (x#)opt� 0. This means that
because of the cumulative effects of work terms and of the
viscosity, the sites cross-talk from their equilibrium positions,
and therefore Dhop� (Dhop)pin . When W<Wmax(z), the sites
may move to be closer at the moment of electron transfer, yet
if W is not sufficiently small x#< (x#)opt so that (Dhop)pin<

Dhop< (Dhop)opt , where (Dhop)opt is given in Equation (19) or
(20). Therefore, this analysis shows that the possible rigidity of
the adsorbed dendrimer structure may play an extremely
important role on Dhop through its control of the value of W

and not only through that of l2kBT/k.

Fick�s first and second laws for apparent diffusion over the
spherical shell surface

Since the flux of A sites along the radial and spherical angular
coordinates is null by symmetry or by construction, the above
results show that the apparent flux of sites A is governed by a
law equivalent to Fick�s first law describing diffusion into the
confined spherical shell [Eq. (33); note that in Equations (33)
and (34), bold italic fonts indicate three-dimensional vectors].

JA�ÿDhopgradCA (33)

By using Equation (33), the universal matter conservation
law readily provides an equivalent to Fick�s second law as
given in Equation (34), where D is the three-dimensional
Laplacian.

qCA/qt�ÿdivJA�Dhopdiv(gradCA)�DhopDCA (34)

Thus, one obtains within the confined shell given in
Equation (35), where f�GA/G0 is the local fraction of sites A.

qf/qt�Dhop(R0
2sinf)ÿ1q[(sinf)(qf/qf)]/qf� (Dhop/R0

2)
[q2f/qf2� (qf/qf)/tanf] (35)

Note that Equation (35) has a singularity at f�p since
cotanf!1 when f!p. Since qf/qt is necessarily finite
except at possible time singularities of the electrochemical
perturbation, the above singularity implies that (qf/qf)p� 0, a
result that follows from the symmetry and topology of the
problem.Since the displacement of one site A is equivalent to
the reverse displacement of n electrons, the flux in Equa-
tion (6) corresponds to the net current intensity flowing
through the cross-section of the shell at latitude f as given by
Equation (36).

I(f)� neaJA�ÿ2pneG0Dhop[(sinf)(qf/qf)] (36)

Note that in Equation (36) we use here the IUPAC
convention, so that oxidation (n< 0) currents are positive.
Noting that G0 corresponds to the homogeneous distribution
of N0 sites over all of the spherical shell except for its flattened
section (Figure 1a), one has G0�N0/[2pR0

2(1� cosf0)], so
that the current intensity is (note that sinf0/(1� cosf0)�
tan(f0/2)) is given by Equation (37), where the subscript zero
indicates that the value is taken at f�f0 (this convention is
observed throughout the remainder of the text).

I�ÿneN0(Dhop/R0
2)tan(f0/2)(qf/qf)0 (37)

Equation (37) has the feature that when f0! 0, tan(f0/2)�
(f0/2)! 0, so that a finite current corresponds to an infinite
value of (qf/qf)0. On the other hand, when f0!p, tan(f0/2)
� 2/(pÿf0)!1 , so that a finite current corresponds to an
infinitely small value of (qf/qf)0. Therefore, near the elec-
trode, when f�f0 , the term (qf/qf)/tanf in Equation (35)
varies as I/f0

2 when f0! 0 so that it tends toward infinity
whenever the current is finite. When f0!p, it varies as I so
that it remains finite whenever the current is finite. This is an
interesting property since it shows that when f0! 0, the term
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(qf/qf)/tanf in Equation (35) plays an extremely important
role near the electrode surface as soon as q2f/qf2 is not an
infinite of higher order. Conversely, since q2f/qf2 is necessa-
rily large when f0!p, because of the constriction of the
diffusional space, the term (qf/qf)/tanf plays a negligible role
in Equation (35) when f0!p. Thus, two completely different
behaviors arise when f0! 0 or f0!p albeit the electrode
radius tends to be infinitely small in both cases since
R0sinf0�R0sin(pÿf0). This occurs because the diffusional
field converges near the electrode surface when f0! 0, while
it diverges when f0!p.

Delineation of the different electrochemical kinetic behaviors

Overview of diffusion in a spherical shell : Examination of
Figure 1a shows that the diffusional problem depends on the
respective magnitude of three scaling lengths: 1) R0(pÿf0),
the maximum length available for diffusion on the spherical
shell; 2) R0sinf0 , the radius of the contact disk of the shell
with the surface which acts here as the electrode since
electrons can only be transferred by the electrode to the shell
at its perimeter; 3) the thickness of the diffusion layer for any
electrochemical experiment of duration q. Within the Ein-
stein ± Schmoluchowski framework of diffusion that has been
shown above to apply to the system at hand, during a time q, a
diffusing particle walks over the distance (2Dhopq)1/2,[1] so that
at time q the extremity of the diffusion layer is located at the
angle fdif given by R0(fdifÿf0)� (2Dhopq)1/2.

Since the maximal diffusion length available on the
spherical shell is R0(pÿf0), the system may experience a
semi-infinite diffusion only when (2Dhopq)1/2�R0(pÿf0).
Otherwise, when (2Dhopq)1/2�R0(pÿf0), the diffusion layer
reaches the top (fdif�p) of the spherical shell much before
the end of the electrochemical perturbation and all material
present on the shell is electrolyzed at time q, so that the
system is expected to behave as a thin layer of adsorbed
species.When the system is under semi-infinite diffusion
(2Dhopq)1/2 �R0 since (pÿf0) is at most commensurable to
unity (viz. , 0� (pÿf0)�p). Therefore, the spherical curva-
ture of the shell is negligible under these conditions. The
system then behaves as if diffusion was occurring in a plane
perpendicular to the axis of symmetry of the shell. Its
behavior depends only on the size of the diffusion layer,
(2Dhopq)1/2, relative to the radius of the electrode, R0sinf0 .
When (2Dhopq)1/2 �R0sinf0 , the size of the diffusion layer is
sufficiently small for the convergence (f0�p/2) or divergence
(f0�p/2) of the diffusional field to be negligible, so that the
system behaves as if experiencing planar diffusion.[49] In the
converse situation, the system must obey quasi-steady state
cylindrical diffusion[2, 49] provided it may behave under con-
ditions of semi-infinite diffusion, that is, provided that
R0sinf0� (Dhopq)1/2 and (Dhopq)1/2�R0(pÿf0) may be ful-
filled simultaneously.When f0 is very small compared to p,
R0(pÿf0)�R0p, and sinf0! 0, so that the above double
inequality may be verified. Therefore, upon increasing the
electrochemical perturbation duration q, the system shifts
from planar diffusion[1] ((Dhopq)1/2�R0sinf0) to planar cylin-
drical diffusion[2, 49, 50] (R0sinf0� (Dhopq)1/2�pR0), and then

behaves as a thin layer of adsorbed material (pR0�
(Dhopq)1/2).[1, 51] When f0 is not very small compared to p,
one has either R0sinf0 commensurable to R0 (that is, when f0

differs significantly from p) or R0(pÿf0)�R0sinf0 (that is,
when f0�p, since (pÿf0)� sin(pÿf0)� sinf0). Therefore,
the above double inequality cannot be fulfilled since R0sinf0

and R0(pÿf0) are commensurable. This means that the quasi-
steady state cylindrical behavior cannot be observed. In other
words, upon increasing the electrochemical perturbation
duration q, the system shifts directly from a planar diffusion
regime ((Dhopq)1/2�R0sinf0) to a situation where it behaves
as a thin film of adsorbed material (R0(pÿf0)�R0sinf0�
(Dhopq)1/2). This simple analysis demonstrates that the magni-
tude of (Dhopq)1/2, the length of the diffusion layer, vis a vis the
system�s two characteristic lengths, R0sinf0 and R0(pÿf0), is
crucial. Furthermore, it shows the great complexity of this
diffusional problem which depends not only on the respective
magnitude of the three lengths mentioned above, but also on
f0. In particular, this intuitive analysis predicts the possible
occurrence of a quasi-steady state diffusional regime only
when f0 is very small. This is to be related to the observation
made above on the respective magnitude of q2f/qf2 and
(qf/qf)/tanf when f0 is small enough.

Analysis of the diffusion problem : Equation (35) governs the
occurrence of any of the three different diffusion regimes that
may occur as a function of the time scale of the electro-
chemical experiments. To delineate these three different
regimes more precisely than above let us introduce the
dimensionless variables in Equations (38) and (39), where q is
the duration of the electrochemical experiment.

time: t� t/q (38)

space:[2, 49, 50] h� [2R0tan(f0/2)/(Dhopq)1/2] ln[tan(f/2)/tan(f0/2)] (39)

With these variables, the time t is unity at the moment of
measurement and the space h varies between zero and infinity
when the diffusion layer describes the whole spherical shell,
that is from f0 to p. This allows Equation (35) to be rewritten
as in Equation (40) (note that qh/qf� [2R0tan(f0/2)/
(Dhopq)1/2]/sinf, and that sinf� 2tan(f/2)/[1� tan2(f/2)])
where D* plays the role of a space dependent diffusion
coefficient [Eq. (41)].[2, 49, 50]

qf/qt�D*q2f/qh2 (40)

D*� {tan(f0/2)[1� tan2(f/2)]/tan(f/2)}2 (41)

Thus inserting Equation (39) in Equation (41) gives Equa-
tion (42), where b is given by Equation (43).

D*� exp(ÿbh)[1� tan2(f0/2)exp(bh)]2 (42)

b� (Dhopq)1/2/[R0tan(f0/2)] (43)

The formulation in Equation (40) shows immediately that
the problem is identical to that of planar diffusion provided
that D* is constant.[1] Equation (41) shows that this may
happen only when f�f0 over the whole diffusion layer
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thickness. Indeed, under such conditions, D*� [1�
tan2(f0/2)]2, so that Equation (44) is valid where h*� h/[1�
tan2(f0/2)].

qf/qt� q2f/qh*2 (44)

From Equation (42), this requires that bh! 0. In planar
diffusion the diffusion layer length is h*dif� 1 at t� 1. It
follows that bhdif� b[1� tan2(f0/2)], so that taking Equa-
tion (43) into account shows that bhdif! 0 is equivalent to
[(Dhopq)1/2/R0]� sinf0 . If bhdif!1 , that is, when R0sinf0�
(Dhopq)1/2, two cases may arise depending on the size of f0 .
When f0 is infinitely small, the bracketed term in Equa-
tion (42) may tend towards unity even if bh!1 . This occurs
provided that Equation (45) is valid.

bhdiff�ÿ 2ln[tan(f0/2)]�ÿ ln(sinf0) (45)

When this is the case, Equation (40) can be rewritten as
Equation (46) and characterizes a cylindrical planar diffu-
sion,[2, 49, 50] that is, occurring within a plane perpendicular to
the axis of the cylindrical electrode.

qf/qt� exp(ÿbh)q2f/qh2 (46)

Under such conditions, the maximal extension of the
diffusion layer is given by Equation (47).[2, 49]

hdif� 2(lnb)/b (47)

This situation may then occur only when R0sinf0�
(Dhopq)1/2�R0. In other words, when (Dhopq)1/2 is sufficiently
large for the diffusion process to experience the cylindrical
curvature of the space around the electrode (whose radius is
R0sinf0�R0) but sufficiently small for the curvature of the
spherical shell (of radius R0) to be neglected. As explained
above, this situation may occur only when f0 is infinitely
small, since when f0 is finite, the above double inequality is
impossible to fulfill, so Equation (46) cannot apply anymore.

D* is infinite whenever (Dhopq)1/2/R0sinf0!1 (f0 finite,
vide supra or (Dhopq)1/2/R0!1 (f0 infinitely small). Indeed,
in both cases, Equation (42) can then be rewritten as
Equation (48).

D*� exp(bh)tan4(f0/2)!1 (48)

To investigate this regime, it is important to note that qf/qt

in Equation (40) must remain finite except at possible
discontinuities of the electrochemical perturbation, therefore,
when D*!1 Eqation (49) becomes valid.

q2f/qh2! 0 (49)

This establishes that the system obeys the steady state. It
follows that qf/qh� constant, so that f! f0� (qf/qh)0h, where
the subscript indicates that the value is taken at h� 0, that is,
at f�f0 . Since by construction f �1, this implies that
(qf/qh)0� (1ÿ f0)/hdif. Owing to the definition of h in Equa-
tion (39), h!1 when f!p. When the diffusion layer
extends over the whole spherical shell (that is, when hdif!

1 ) one has necessarily (qf/qh)0! 0. This implies that f� f0

over most of the shell. Let us then introduce the dimensionless
potential [Eq. (50)], where E is the electrode potential and E0

is the formal potential of the A/B redox couple.

x� nF(E0ÿE)/RT (50)

For a Nernstian (viz. , a fast an reversible) electron transfer,
for example, one has then f0� [1� exp(x)]ÿ1. To evaluate the
current, Equation (37) is no longer useful; indeed, since
(qf/qh)0! 0, that is, (qf/qf)0! 0, it amounts only to express-
ing that the current is considerably smaller than in the limiting
situations identified above. However, since f� f0�
[1� exp(x)]ÿ1 over most of the shell, the current may be
obtained from the elementary charge dq� Idt consumed
during an elementary time dt. This elementary charge is
equivalent to consuming dN�ÿN0(df/dt)dt sites A, so that
I�ÿdq/dt� ne(dN/dt)� neN0(df0/dx)(dx/dt), and therefore
Equation (51) is valid.

I�ÿneN0{exp(x)/[(1� exp(x)]2}(dx/dt) (51)

The expression in Equation (51) is identical to that
obtained under the same conditions for any film of electro-
active material of thickness l deposited on an electrode when
(Dq)1/2� l, where D is the diffusion coefficient (or the
apparent diffusion coefficient) within the film. In other words,
the exact geometry of the space in which diffusion occurs is
irrelevant.[1, 51] Therefore, we do not need to pursue the
solution of this problem when the system is not Nernstian,
since it is already well established.

To conclude this section, let us express the current in the
general case (for any b and f0) based on the present
dimensionless variables. With these notations, the current
[Eq. (37)] can be expressed by Equation (52), where Y

[Eq. (53)] is the dimensionless current.

I�ÿ [2tan(f0/2)/(1� cosf0)](neN0/q)(Dhopq/R0
2)1/2Y (52)

Y� (qf/qh)0 (53)

This allows the formulation of the dimensionless current in
the three limiting cases [Eqs. (54) ± (56)] that have been
identified above as a function of b and f0 values (the
expressions are given for a Nernstian electron transfer at the
electrode surface; vide infra for slower charge transfer cases).

Case I

[(Dhopq)1/2/R0sinf0! 0, 0�f0�p ; Eq. (44)] (planar diffu-
sion):[1]

YI� (qf/qh*)0[(1� cosf0)/2] (54)

Case II

[(Dhopq)1/2/R0sinf0!1 and (Dhopq)1/2/R0! 0, 0�f0�p/2;
Eq. (46)] (cylindrical diffusion):[2, 49, 50]

YII� [b/(2lnb)]/[1� exp(ÿx)] (55)
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Case III

[(Dhopq)1/2/R0!1 , when 0�f0�p/2, or (Dhopq)1/2/R0sinf0!
1 , when p/2�f0�p ; Eq. (51)] (adsorption):[1, 51]

YIII� [R0/(Dhopq)1/2][(1� cosf0)2/2sinf0]{exp(x)/[(1� exp(x)]2}(dx/dt) (56)

In Equation (54)(qf/qh*)0 is a constant that depends on the
electrochemical perturbation but that is independent of N0 , b,
or f0 . For example, in cyclic voltammetry (qf/qh*)0� 0.446e at
the peak currents for a Nernstian electron wave (e� 1 for the
forward wave, and e�ÿ1 for the backward wave when the
scan inversion is performed sufficiently far after the forward
peak).

The existence of these three different cases is controlled by
Equation (35) so that they are not related to a specific
electrochemical method or controlled by the kinetics of
electron transfer at the electrode surface. However, the exact
electrochemical behavior observed necessarily depends on
the method and on the kinetics of electron transfer at the
electrode surface, owing to the terms (qf/qh*)0 in Equa-
tion (54) or (dx/dt) in Equation (56) (note that in this respect
the term exp(x)/[(1� exp(x)]2 in Equation (56) is valid only
for a Nernstian electron transfer; vide infra for a non
Nernstian case). The electrochemical behavior observed in
case II corresponds to a quasi-steady state behavior, so it is
independent of the electrochemical method,[2, 49, 50] the current
being solely a function of the electrode potential and of the
kinetics of electron transfer at the electrode surface (similarly
the term 1/[1� exp(x)] in Equation (55) is valid only for a
Nernstian electron transfer; vide infra for a non Nernstian
case).

Each limiting case predominates over the two others within
specific domains of the (b,f0) space. However, b is a function

of f0 which describes the geometric shape of the shell, and of
Dhopq/R0

2 which describes the electrochemical time scale (q)
relative to the duration of diffusion over the whole shell (Dhop/
R0

2). For experimental purposes, it is more convenient to
separate the two effects. This is easily performed by defining
b* according to Equation (57) so that it is independent of f0 .

b*� [btan(f0/2)]2�Dhopq/R0
2 (57)

Schematic domains of predominance of each limiting case
I ± III, may be indicated through a zone diagram in the (b*,f0)
space (Figure 3a). In this schematic diagram, the boundaries
between two limiting cases have been set arbitrarily so as to
correspond to b*� 1 and or b*sin2f0 �1, respectively. In
practice each boundary has a given thickness corresponding to
the progressive transition between the two limiting cases
(compare Figures 3 b, c). This diagram suggests that a pure
case II cannot be observed unless f0 achieves extremely small
values. In practice, when f0 is very small, one site occupies an
average cone angle Wsite� 4p/N0, which corresponds to a disk
delimited by the angle fsite� arcos(1ÿWsite/2p) on the
spherical shell, that is, to dfsite� 2/N0

1/2 within better than
3 % provided that N0 is larger than 10. Thus, if the dendrimer
retains a spherical shape when it rests on the electrode
surface, the minimal angle f0 with physical relevance in our
model is given by Equation (58).

(f0)min� dfsite� 4/N0
1/2 (58)

For N0� 64, this gives (f0)min/p� 0.15. The maximum value
of f0 depends on the compactability of the chains that link
each redox site to the center of the dendrimer. However it is
intuitive that (f0)max cannot approach p without introducing

Figure 3. Kinetic zone diagrams corresponding to the three different diffusional behaviors observed as a function of b*�Dhopq/R0
2 and f0. a) Schematic

zone diagram. b) Zone diagram computed for cyclic voltammetry (q�RT/nFv) for a Nernstian electron transfer at the electrode surface. The limits between
each case and their transitions are drawn considering a 10 % precision on the current intensity of the voltammetric peak. c) Same as b) but for a totally
irreversible heterogeneous charge transfer. See Table 1 for the voltammetric peak characteristics in each pure mechanistic zone. In b) and c) the vertical
dotted segment indicates the projection of the path followed by the system when the scan rate is increased from 0.036 MV sÿ1 (top circle) to 2.52 MV sÿ1

(bottom circle).
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severe strains on the linkers. Therefore, in the zone diagram of
Figure 3a, the outer domains around f0/p� 0 or 1 have no
experimental significance. This shows that in any experimen-
tally realistic situation, a pure case II will be difficult to
observe, although it may still play a significant role by
contaminating the two others cases and their transition as
soon as f0 is less than about p/2.

Effect of charge transfer kinetics at the electrode surface : In
the previous section we have considered a Nernstian electron
transfer in order to delineate the intricacies of the diffusional
problem at hand. However, for nanometric dendrimers and
average Dhop values, Figure 3a, shows that the observation of a
transition from case III to case I requires extremely short time
scales. For example for Dhop� 5� 10ÿ6 cm2sÿ1 (vide infra) and
R0� 10 nm, the maximum time qmax allowed for observing
such a transition, such as Dhopqmax/R0

2� 1 (Figure 3a), is of the
order of 100 ns, a number which corresponds to a scan rate in
the range of a few tenths of a megavolt per second.
Furthermore, even for reasonably small f0 values, R0sinf0 ,
the radius of the disk through which electrical contact
between the electrode and the redox spherical shell is made,
is extremely small. Since the edge of this disk acts as the
electrode for the spherical shell, extremely large rate con-
stants of electrode transfer are required to allow Nernstian
behavior.[2, 49] So, even if the Nernstian approximation is
extremely useful in delineating the different kinetic situations
that may occur, it is unlikely to be easily fulfilled experimen-
tally for nanometric dendrimers and small f0 angles. It is
necessary to consider the effects of the kinetics of heteroge-
neous electron transfer at the edge of the disk on which the
spherical shell rests.

Considering Butler ± Volmer kinetics[1] and denoting kel�
kSexp(ax) the electron transfer rate constant (a being the
electron transfer coefficient and kS the rate constant at E�
E0) one obtains Equation (59) where CA and CB are expressed
in molecules per unit of volume.

I�ÿne(2pR0dsinf0)kSexp(ax)[CAÿCBexp(ÿx)]0 (59)

Introducing the dimensionless variables in Equations (39)
and (53) and equating to the expressions in Equations (37)
and (59) gives Equation (60), where L [Eq. (61)] is the
dimensionless rate of electron transfer.

f0� [1� exp(x)]ÿ1� (Y/L){exp(ÿax)/[1� exp(ÿx)]} (60)

L� kS[(1� cosf0)/2](q/Dhop)1/2 (61)

Note that L, as defined in Equation (61) mixes intrinsic
components of the system at hand (kS, R0, f0 , Dhop) with q

which characterizes the time scale of the electrochemical
method and which is already incorporated into the dimen-
sionless parameter b* [Eq. (57)]. From an experimental point
of view, it is more advisable to separate the intrinsic
components from the time scale of the experiment by
introducing L*� (kSR0/Dhop)(1� cosf0)/2, so that Equa-
tion (61) becomes L�L*b*1/2. L* characterizes just the
intrinsic heterogeneous kinetic properties independently of

the time scale of the electrochemical perturbation, and is thus
constant when q varies. With these notations, the kinetic
behavior of the system is regulated by three independent
dimensionless parameters, f0 , which characterizes only its
geometry, L*, which characterizes the intrinsic charge trans-
fer kinetics at the electrode surface, and b*, which character-
izes the rate of electron hopping and the time scale of the
electrochemical perturbation. The experimental interest of
this new triplet of dimensionless parameters is that only b*
varies with the scan rate for a given system. However, as
above for b� b*1/2/tan(f0/2) [Eq. (57)], L results more con-
veniently from a mathematical point of view, so that we
continue hereafter with this parameter.

When L is excessively large vis a vis Y, the second term in
the right-hand side of Equation (60) vanishes and Equa-
tion (62) becomes valid showing that system behaves in a
Nernstian fashion; the voltammetric waves are observed
around x� 0.

f0� [1� exp(x)]ÿ1 (62)

Conversely, when L is excessively small, the rate of electron
transfer is too small to afford a significant current in the
potential range around E0, so that the voltammetric peaks are
shifted towards large jx j values.[1] Then, by denoting x*�
a*x� (lnL) where a*�a for the forward wave or a*�aÿ 1
for the backwards wave, Equation (62) simplifies into Equa-
tion (63) for the forward wave and into Equation (64) for the
backward wave (note that then Y is negative), so that the
system follows slow charge transfer kinetics.[1, 52]

f0�Yexp(ÿx*) (63)

f0� 1�Yexp(ÿx*) (64)

In this slow charge transfer limit, the peak currents given
above in Equations (54) ± (56) for the Nernstian situations
become Equations (65) ± (67) for cases I ± III, respectively.

Case I

[(Dhopq)1/2/R0sinf0! 0, 0�f0�p ; Eq. (44)] (planar diffu-
sion):[1]

YI� (qf/qh*)0[(1� cosf0)/2] (65)

Case II

[(Dhopq)1/2/R0sinf0!1 and (Dhopq)1/2/R0! 0, 0�f0�p/2;
Eq. (46)] (cylindrical diffusion):[2, 49, 50]

YII� [b/(2lnb)]/[1� exp(ÿx*)] (66)

Case III

[(Dhopq)1/2/R0!1 , when 0�f0�p/2, or (Dhopq)1/2/R0sinf0!
1 , when p/2�f0�p ; Eq. (51)] (adsorption):[1, 51]

YIII� [R0/(Dhopq)1/2][(1� cosf0)/2tan(f0/2)]Xa(x*) (67)
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In Equation (65), (qf/qh*)0 is a constant that depends on the
electrochemical perturbation but that is independent of N0, b

or f0 . For example, in cyclic voltammetry[52] (qf/qh*)0�
0.496e[ae� (1ÿ e)/2]1/2 at the peak currents for a Nernstian
electron wave (e� 1 for the forward wave, and e�ÿ1 for the
backward wave when the scan inversion is performed
sufficiently far after the forward peak). Similarly, Xa(x*) in
Equation (42) is an analytical function of a and x* that
depends on the electrochemical perturbation (vide infra for
cyclic voltammetry).

In the intermediate range of L values, the general
Equation (60) applies without simplification so f0 is controlled
simultaneously by kinetic and thermodynamic factors (quasi
reversible charge transfer kinetics). It is therefore understood
that the existence of slow charge transfer (vs. a Nernstian
system) affects the electrochemical wave shapes and position
but does not alter the respective positions of the three limiting
cases in the [(Dhopq)1/2/R0,sinf0] domain. In other words, the
schematic picture shown in Figure 3a is conserved. To pursue
this analysis, we need now to particularize it to the case of
cyclic voltammetry.

Formulation of the voltammetric problem : In voltammetric
experiments the electrode potential is scanned linearly with
time from a potential Ei where the species of interest is not
electroactive (nF(EiÿE0)� 0, E0 being the formal potential
of the species, so that f� 1 over the whole shell) to a potential
Ef located on the current plateau (nF(EfÿE0)� 0) of the
species for the redox reaction of interest; the potential scan
direction is then reversed. Denoting v as the algebraic
potential scan rate (vn> 0, that is, v> 0 for a reduction, since
n> 0; v< 0 for an oxidation, since n< 0), xi� nF(EiÿE0),
xf� nF(EfÿE0) and tf� (EiÿEf)/v, one obtains with the
above defined dimensionless variables Equation (68) for the
forward scan (t� tf� nFvtf/RT, that is, x� xf� nF(EfÿE0))
and Equation (69) for the backward scan (t� tf).

x� xi� (nFvq/RT)t (68)

x� xi� 2(nFvq/RT)tfÿ (nFvq/RT)t (69)

Equations (68) and (69) show that it is advisable to define q

as given in Equation (70)[52] for cyclic voltammetry.

q�RT/nFv (70)

In this way the Equations (68) and (69) simplify into x�
xi� t and x� xi� 2tfÿ t, respectively. In the following we
assume everywhere that xi is negative enough (that is, xi�ÿ 10)
for the forward wave to be independent of its exact value.
Similarly, xf is assumed positive enough (that is, xf�� 10) for
the backward wave to be independent of its exact value.

With those notations, the voltammetric problem amounts to
solving the diffusion Equations (40) and (42) with the
boundary conditions given in Equations (71) ± (73).

x� xi , h� 0: f� 1 (71)

x> xin , h� 0: f0� [1� exp(x)]ÿ1� (Y/L){exp(ÿax)/[1� exp(ÿx)]} (72)

x> xin , h!1 : (qf/qh)p! 0 (73)

Owing to Equations (61) and (43) and to the present
definition of q in Equation (70) L and b can be defined as
given in Equations (74) and (75), respectively.

L� kS[(1� cosf0)/2](RT/nFvDhop)1/2 (74)

b� (nFvDhop/RT)1/2/[R0tan(f0/2)] (75)

Resolution of this system affords the value of Y� (qf/qh)0

as a function of t, from which the experimental voltammetric
current is readily obtained by application of Equation (76)
owing to Equations (52) and (70).

I�ÿ [2tan(f0/2)/(1� cosf0)][neN0(nFvDhop/RT)1/2/R0]Y (76)

In a general case, this system must be solved numerically.
However, the above analyses have shown that its solution
Y(t) tends towards known asymptotic values when (nFvDhop/
RT)1/2/R0 , (nFvDhop/RT)1/2/(R0sinf0) and L take extreme
values. When L!1 (Nernstian behavior) these limiting
solutions are given in Equations (54) ± (56) where in cyclic
voltammetry dx/dt� 1 for the forward scan and dx/dt�ÿ1
for the backward scan in Equation (56). Similarly, when L! 0
(slow charge transfer) these limiting solutions are given in
Equations (65) ± (67) where the function Xa(x*) (case III,
Equation (67)) needs to be established.

To obtain the expression of Y in case III, we proceed as
follows. As established for the derivation of Equation (51),
and using Equation (52), within the limiting case III, Y(x*) is
given by Equation (77), where x*�a*x� lnL and a*�a for
the forward scan or a*� (aÿ 1) for the backward one, that is,
by Equation (78).

Y�ÿ [(1� cosf0)2/2sinf0](nFvR0
2/DhopRT)1/2[(dx*/dt)](df0/dx*) (77)

Y�ÿega*(df0/dx*) (78)

In Equation (78), g� [(1� cosf0)2/2sinf0](nFvR0
2/

DhopRT)1/2, and e� 1 for the forward scan or e�ÿ1 for the
backward one. Since this situation corresponds to L! 0, f0 is
given by Equation (63) or (64) for the forward and backward
voltammetric scans respectively, that is Equation (79) be-
comes valid.

Y/(ega*)�ÿ df0/dx*� [Yÿ dY/dx*]exp(ÿx*) (79)

This shows that Y is solution of (note that Y� 0 during the
forward scan and Y� 0 during the backward one) Equa-
tion (80) where x*'� x*ÿ ln(ega*)�a*x� ln(L/ega*).

d[ln(eY)]� [1ÿ exp(x*')]dx*' (80)

Equation (55) shows that the extrema of Y are observed at
any x value such as xp*'� 0, viz., at xp�ÿaÿ1ln(L/ga) for the
forward scan, and at xp�ÿ (1ÿa)ÿ1ln[L/g(1ÿa)] for the
backward scan. Integration of Equation (80) affords Equa-
tion (81) where 'U' is an integration constant.

Y� eexp[x*'ÿ exp(x*')]U (81)
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To evaluate this constant, it is noted that with the present
notations, at any potential Equations (63) and (64) afford
Equation (82).

Y� ga*[(1ÿ e)/2� ef0]exp(x*') (82)

[(1ÿ e)/2� ef0]! 1 when x*'!ÿ1 , so that, Equation (82)
shows that Y� ga*exp(x*') when x*'!ÿ1 . On the other
hand, from Equation (81), Y�Ueexp(x*') when x*'!ÿ1 ,
so that U� ega*, and Y can be given by Equation (83).

Y� ga*exp[x*'ÿ exp(x*')] (83)

Equation (57) shows that when L! 0 (slow charge trans-
fer), the limiting voltammograms observed in case III, are
composed of two distorted bell-shaped curves, whose peak
currents located at x*'� 0, have the intensity ga*/eN�
0.368ga*, where e is the Neperian logarithm base, viz.,
lneN� 1. We thus obtain Equations (84) and (85) for the
forward wave and Equations (86) and (87) for the backward
wave finally for the case III in the
slow charge transfer regime.

YIII
p� (a/eN)[R0/(Dhopq)1/2]

� [(1 � cosf0)2/2sinf0] (84)

xIII
p�ÿaÿ1ln[(kSq/aR0)tan(f0/2)] (85)

YIII
p�ÿ [(1ÿa)/eN][R0/(Dhopq)1/2]

´ [(1� cosf0)2/2sinf0] (86)

xIII
p� (1ÿa)ÿ1ln{[kSq/(1ÿa)R0]tan(f0/2)}

(87)

Again both set of values are
identical to those obtained for a thin
film of adsorbed electroactive ma-
terial in the slow charge transfer
kinetic regime.[1, 51]

This analysis has identified six
different limiting voltammetric re-
gimes and produced the character-
istics of the voltammograms ob-
tained in each regime achieved
whenever the three key parameters
(nFvDhop/RT)1/2/R0 , (nFvDhop/RT)1/2/
(R0sinf0) and L obey the conditions
which have been defined in the
analysis of each limiting case I, II,
and III. When these relationships
are not obeyed, analytical expres-
sions cannot be obtained for the
peak current and potential values.

However, the numerical solution
of the diffusion Equations (40) and
(42) associated with the boundary
conditions in Equations (71) ± (73)
allows the prediction of voltammo-
grams for any value of b and L

[Eqs. (49) and (50)] at any value of
f0, as well as allowing one to

eventually decide how far the system lies from any one of
its limiting situations. This was performed (see Experimental
Section) in particular to establish the zone diagrams in
Figures 3 b, c, and all the working curves used in the following
discussion. In Figures 3 b, c each limiting domain is limited by
boundaries that have been arbitrarily set so that the voltam-
metric current peak intensities deviate by less than 10 % from
the prediction for the limiting case considered. In particular,
those two zone diagrams confirm that a clean case II cannot
be observed experimentally except if f0 is unrealistically
small.

Experimental Results

The electrochemistry of a single layer of adsorbed dendrim-
ers[6±8] was performed at extremely high scan rates by taking
advantage of our recent potentiostat design.[3, 4] This design
allows performance in the megavolt per second range of scan
rates with electronic compensation of the cell resistance so
that the voltammograms are undistorted under 2 MVsÿ1.
Figure 4 represents an illustrative series of voltammograms

Figure 4. Representative set of the voltammograms of a saturated solution of the dend-64-[RuII/RuIII(tpy)2]
dendrimer (Scheme 1) investigated in this study as a function of the scan rate (number indicated in MVsÿ1 in the
bottom right angle of each panel). Voltammetry was performed at room temperature (20 8C) in acetonitrile,
0.6 m NEt4BF4, at a platinum disk electrode (r0� 5.0� 0.5 mm radius). Potentials are given with respect to the
platinum pseudo-reference electrode used in this study. Thin curves: experimental voltammograms. Thick
dashed curves: predicted anodic voltammetric peaks upon considering a mono-disperse population of
dendrimers (g0� 1.6 and G(g)�d(gÿ 1.6) where d is the Dirac function). Thick solid curves: predicted
anodic voltammetric peaks upon considering the distribution G(g) shown as a solid curve in Figure 7b.
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obtained for the dend-64-[Ru(tpy)2] dendrimer investigated
in this study (Scheme 1)[6±8] over the megavolt per second
range of scan rates. As apparent in these voltammograms, the
Faradaic current adds to the capacitive one (which varies as
v), yet it remains a large component of the voltammogram
owing to the large surfacic concentration of dendrimer. In the
low MV sÿ1 range, the Faradaic current response is close to a
bell-shape, in agreement with what is expected for a fully
oxidized layer of adsorbed species.[1, 51] However, when the
scan rate is increased to several MVsÿ1 one observes the
development of voltammograms with the expected shape for
transient infinite diffusion.[1, 4]

Such data could be obtained only when the electrode was
pulsed between sufficiently positive and negative potentials in
the presence of the dendrimer before the series of voltammo-
grams were recorded. When this electrochemical pre-treat-

ment which forced continuous adsortion/desorption of the
dendrimer molecules was not applied, the general pattern
shown in Figure 4 was retained, yet the anodic and cathodic
peaks were considerably broader, and one could often
observe a split of the voltammetric peaks as soon as the scan
rate was increased. However, the above pretreatment allowed
us to obtain reproducible narrow peaks such as those shown in
Figure 4.

Figure 5 presents the variations of the current function
Ipvÿ1/2 as a function of the scan rate. In agreement with the
observed voltammetric shapes, at the smaller scan rates the
current function tends to vary as v1/2, reflecting that Ip tends to
be proportional to v as required[1, 51] for complete electrolysis
of an adsorbed layer (case III, Table 1). For the larger scan
rates Ipvÿ1/2 asymptotically approaches a constant plateau,
where it tends to be proportional to v1/2 as required for a semi-

Scheme 1. Structure of fourth generation PAMAM dendrimer with 64 pendant ruthenium terpyridyl moieties (Dend-64-[Ru(tpy)2]). The four central
concentric shaded areas represent each generation of the dendritic structure. The external fifth shaded area represents the location of the 64 [Ru(tpy)2] redox
centers.
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infinite diffusion (case I, Table 1). The variations of the peak-
to-peak separation, DEp, also agree with this general pattern.
Indeed, except for the two highest scan rates where the
measurements are contaminated by ohmic drop and filtered
by the potentiostat, at sufficiently high scan rates (v>
0.1 MV sÿ1) DEp varies with a slope of 120� 10 mV per unit
of log(v), which is clear evidence of semi-infinite diffusion
(case I) with slow charge transfer kinetics[52] (see Table 1).
From this slope, it is deduced that a� 0.5 (Table 1).[52]

However, at slower scan rates, DEp tends towards a constant
value of 80� 5 mV. One does not observe a slope close to
240 mV per unit of log(v), as expected for case III in the slow
charge transfer regime (Table 1).[1, 51] This indicates that the
rate of electron transfer at the electrode surface is sufficiently
large to yield closely Nernstian behavior in the range where
case III is applicable. However, the theoretical results in
Table 1 predict that DEp should tend towards zero and not
towards a constant value. In fact, the same constant value
(80� 5 mV) has already been observed at considerably small-
er scan rates than those used here (v< 0.1 V sÿ1).[6] Therefore
any relationship between this constant DEp limit and any
kinetic process is clearly ruled out. We will examine the origin
of this term in a later stage of the following discussion.

Discussion

The above results qualitatively
follow the main trends elabo-
rated in the previous theory.
The only qualitative discrepan-
cy being related to the limit of
DEp at small scan rates that is
not zero as predicted in the
above theory. We will discuss
this important point in a second
stage of this discussion, since it
clearly indicates that upon oxi-
dation/reduction of the ensem-
ble of adsorbed dendrimers, the
overall current is not the simple
arithmetic multiplication of the
electrochemical process occur-
ring at one isolated dendrimer
molecule.

Characterization of diffusion within one dendrimer

Analyzing quantitatively the data at hand requires the
determination of several experimental parameters (Dhop/R0

2,
kS/Dhop

1/2, and f0) which control the values of the dimension-
less variables b* and L at a given scan rate. For this we
proceed as follows.

As discussed above, the variations of DEp versus log(v) at
higher scan rates (0.1 MV sÿ1< v< 1.5 MV sÿ1) tend towards
the asymptotic behavior predicted for case I under slow
charge transfer kinetic control. Using the corresponding
expression in Table 1, one may deduce the value of (kS/Dhop

1/2)
[(1� cosf0)/2]. However, at slow scan rates, that is, when the
system reaches case III under Nernstian control, DEp� 80 mV
was determined experimentally instead of the predicted 0 mV.
At this stage one does not know whether or not this applies
also to the large scan rate range. In other words, one does not
know what ªzero referenceº value to use as the limit for the
would-be case I-Nernstian regime (DEp� 0, or 80 mV, or any
value in between?) in order to determine (kS/Dhop

1/2)[(1�
cosf0)/2].[52] Considering both of these two possible ªzero

Figure 5. a) Symbols: variations of the anodic peak current intensity Ip/v1/2 as a function of the scan rate v1/2. Solid
curve: predicted variations for f0� 1.2 rd, (Dhop

1/2/R0)� 4.2� 103 sÿ1/2, and (kS/Dhop
1/2)� 1.2� 103 sÿ1/2 ; horizontal

dashed line: high scan rate limit (Ip/v1/2� 2.81� 10ÿ5 AMVÿ1/2s1/2); slanted dashed line: low scan rate limit (Ip/v�
4.35� 10ÿ5 AMVÿ1 s). b) Symbols: variations of the peak-to-peak potential difference DEp as a function of the
scan rate v. Dashed curve: predicted variations DEp

th for f0� 1.2 rd, (Dhop
1/2/R0)� 4.2� 103 sÿ1/2, and (kS/Dhop

1/2)�
1.2� 103 sÿ1/2. Solid curve: DEp

th� 80 mV (see text).

Table 1. Summary of the different voltammetric characteristics observed for each of the six limiting kinetic situations identified in this study.[a,b]

Nernstian (L� 1)[c] Slow charge transfer (L� 1)[c]

Case I Ip/(neN0)� 0.446� (Dhop/R0
2q)1/2tan(f0/2) Ip/(neN0)� 0.496(a*Dhop/R0

2q)1/2tan(f0/2)
Ep�E0ÿ 1.09� (RT/nF)[d] Ep�E0ÿ (RT/a*nF)[0.780ÿ ln(La*1/2)][e]

DEp� 2.18(RT/nF)[d] DEp� (RT/nF)(0.780ÿ lnL)/[a(1ÿa)]ÿ (RT/2nF)[aÿ 1lna� (1ÿa)ÿ 1ln(1ÿa)][d]

Case II[e] Ip/(neN0)� (Dhop/R0
2)/(1� cosf0)ln{Dhopq/[R0tan(f0/2)]2} Ip/(neN0)� (Dhop/R0

2)/(1� cosf0)ln{Dhopq/[R0tan(f0/2)]2}
E1/2�E0[d] E1/2�E0ÿ (RT/a*nF)lnL[d]

Case III Ip/(neN0)� 1/(4q) Ip/(neN0)�a*/(eNq)� 0.368(a*/q)
Ep�E0[d] Ep�E0ÿ (RT/a*nF)ln[(kSq/R0)tan(f0/2)][d]

DEp� 0[d] DEp�ÿ (RT/nF)ln[(kSq/R0)tan(f0/2)]/[a(1ÿa)][d]

[a] See text and Figure 3 for the kinetic domain of each case I ± III as a function of Dhopq/R0
2 and f0 . [b] The peak currents are given for one dendrimer

molecule; for Nd�pr0
2GdNA identical dendrimers adsorbed on the electrode surface (NA being the Avogadro number and Gd expressed in moles per unit of

surface), the overall experimental current is Nd times that indicated. Ep is the peak potential of the forward wave, and DEp the peak-to-peak potential
separation. [c] L� kS(q/Dhop)1/2[(1� cosf0)/2], q�RT/nFv in cyclic voltammetry; a* represents a when n> 0, or (1ÿa) when n< 0. [d] These expressions
are given for the case where the reduced and oxidized forms of the dendrimer have the same adsorption isotherms. [e] In case II, a single voltammetric
sigmoid wave is observed, so its half wave potential E1/2 is indicated.
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referenceº values, one obtains 5.5� 102 sÿ1/2� (kS/Dhop
1/2)

[(1� cosf0)/2]� 11.5� 102 sÿ1/2. In the following we retain
their average value (kS/Dhop

1/2)[(1� cosf0)/2]� 8� 102 sÿ1/2. f0

being unknown kS/Dhop
1/2 cannot be determined yet.

From the limit observed at large scan rates (Figures 5 a or
6 a one determines that in case I-slow charge transfer regime,
(Ip/A)! 2.81� 10ÿ8 (v/V sÿ1)1/2 when v!1 . Conversely,
when v! 0, in the case III ± Nernstian limit, one has
(Ip/A)! 4.35� 10ÿ11 (v/V sÿ1). From the ratio of these two
limits one eliminates the unknown common NdeN0 factor
(Table 1), so that (Dhop/R0

2)1/2tan(f0/2)� 2.9� 103 sÿ1/2 is cal-
culated when a� 0.5. Yet, kS/Dhop

1/2 and Dhop/R0
2 cannot be

determined since f0 is still unknown.
This set of relationships gives the required parameters

(Dhop/R0
2, kS/Dhop

1/2) as a function of the still unknown f0

value: (Dhop/R0
2)1/2� 2.9� 103/tan(f0/2), and (kS/Dhop

1/2)� 8�
102/[(1� cosf0)/2], where in each case the constant term is in
sÿ1/2. We then performed a series of simulations for a series of
constant f0 values (Figures 6 b, c). As observed in Fig-
ures 6 b, c, the predicted variations of v/Ip strongly depend
on f0 over the window of scan rates used in this study even if
all curves tend asymptotically towards the same limit (case
III ± Nernstian) at slow scan rates. This can be easily under-
stood by examination of the zone diagram in Figures 3 b or 3 c.
When f0 is extremely small, starting in case III and increasing
the scan rate forces the system into the transition zone II/III
so as to eventually reach a pure case II; upon increasing
further the scan rate, the system is then forced into the
transition I/II and finally reaches a pure case I ± slow charge
transfer. A complete displacement from pure case III to pure
case I would then require at least two to three orders of
magnitude of scan rates (Figures 3 b or 3 c). Experimentally
one observes such a transition over a slightly less than two
orders of magnitude of scan rate (from 0.036 to 2.52 MVsÿ1).
This clearly shows that f0 cannot be small. Whenever f0 is
larger than about p/2, the system passes directly from case III
to case I upon increasing the scan rate and the corresponding
I/III transition requires less than ca. one order of magnitude

of scan (Figures 3 b or 3 c). This shows that f0 cannot greatly
exceed p/2. When f0 is around p/2, the transition from case III
to case I passes through the general case so that its duration
depends critically on f0 because this latter controls the
amount of interference from the unseen case II (Figures 3 b or
3 c). As a result, v/Ip variations with v become extremely
sensitive to the exact value of f0 when it is around p/2. One
may take advantage of this situation to determine f0 with an
excellent precision. Thus, comparison of the experimental
variations of v/Ip as a function of v with the set of working
curves presented in Figures 6 b, c shows (Figure 6 a) that an
excellent agreement is observed for f0� 1.2� 0.1 rd� 2p/5. It
ensues that (Dhop/R0

2)1/2� (4.2� 0.5)� 103 sÿ1/2 and that (kS/
Dhop

1/2)� (1.2� 0.5)� 103 sÿ1/2.
From the f0 value determined above it is deduced that a

dendrimer molecule does not rest on the electrode surface by
retaining its total spherical solution shape, but that a
significant fraction of chain linkers are in close contact with
the electrode surface (see Figure 1b). In fact, within the
framework of this model, the disk of contact with the
electrode has a radius of R0sinf0� 0.93R0 . This shows that
the adsorbed dendrimer molecule is distorted vis a vis the
spherical shape it has in solution,[36±38] and more closely
resembles a hemisphere. Assuming that the dendrimer
molecule retains its inner volume when it adsorbs on the
electrode surface, R0� 1.1Rfree where Rfree� 5 nm is the
estimated radius of a free dendrimer molecule in solution.[6±8]

Such data compares extremely well with the result of scanning
tunneling microscopy (STM) investigations of related den-
drimers on platinum electrode surfaces in which it was noted
that the radius of the adsorbed globule was about 10 % larger
than that calculated for the free molecule.[7]

Using the above R0 value affords Dhop� 5� 10ÿ6 cm2sÿ1 and
kS� 2.5 cm sÿ1 based on the above average values of Dhop/R0

2

and kSDhop
ÿ1/2. By using Equation (8) and d� 1.4 nm for the

diameter of one Ru(tpy)2 redox center, the above Dhop value
gives k� 4.8� 10ÿ16 L sÿ1. This value corresponds to a would
be homogeneous self-exchange rate constant 6kNA� 1.7�

Figure 6. Variations of v/Ip as a function of the scan rate. a) Experimental data (symbols) and predicted variations (solid curve) for f0� 1.2 rd, (Dhop
1/2/R0)�

4.1� 103 sÿ1/2, and (kS/Dhop
1/2)� 1.2� 103 sÿ1/2. Dashed lines: limit at low (horizontal line, Ip/v� 4.35� 10ÿ5 AMVÿ1s) or high (slanted line, Ip/v1/2�

2.81� 10ÿ5 AMVÿ1/2s1/2) scan rates. b) and c) Predicted behaviors at a series of different f0 values for (Dhop
1/2/R0)tan(f0/2)� 2.9� 103 sÿ1/2, and (kS/Dhop

1/2)
[(1� cosf0)/2]� 8� 102 sÿ1/2 ; b) from bottom to top, f0� 0.050, 0.345, 0.640, 0.935, 1.230, 1.525, and 1.820; c) from top to bottom, f0� 1.820, 2.115, 2.310,
2.610, and 2.900.



An Electrochemical Nanometric Microtome 2206 ± 2226

Chem. Eur. J. 2001, 7, No. 10 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001 0947-6539/01/0710-2221 $ 17.50+.50/0 2221

109 L mol sÿ1 in solution. Note that such a rate validates a
posteriori our initial assumption concerning the negligible
role of direct electron tunneling between the electrode
surface and the redox sites distributed on the dendrimer
outer shell. The above value of 6kNA� 1.7� 109 Lmol sÿ1

ought to be compared to ksoln
act , the isotopic rate constant of

the electron transfer between free [RuII/RuIII(tpy)2] redox
centers. To the best of our knowledge, ksoln

act has never been
determined for [RuII/RuIII(tpy)2] redox centers, but the self-
exchange rate constant ksoln

act � 109 L molÿ1sÿ1 has been report-
ed for the related [RuII/RuIII(bpy)3] system in water.[53] In
other words, the measured Dhop value corresponds to what is
expected for an electron self-exchange involving adjacent
redox centers in the transition state.

However, a full coverage of the dendrimer shell would
require about Nmax� 140 redox centers, so that the average
distance between the centers of two [Ru(tpy)2] molecules on
the dendrimer shell is d(Nmax/N0)1/2� 2.1 nm for 64 redox sites.
Assuming that electron exchanges occur between [RuII/
RuIII(tpy)2] redox centers pinned at their equilibrium posi-
tions and using an average value of l� 10 nmÿ1 (viz. ,
1 �ÿ1)[44, 45] should then correspond to 6NAk/ksoln

act � 1.2� 10ÿ3

[Eq. (10)]. However, l may be as small as 5 nmÿ1 (viz. ,
0.5 �ÿ1), depending on the exact nature of the nonconducting
linker which separates the two exchanging centers. The above
estimation was based on the maximum reported l value.
Conversely, using the minimum reported value, that is, l�
5 nmÿ1 affords 6NAk/ksoln

act � 3.5� 10ÿ2. Since the experimental
value of 6NAk/ksoln

act is found to be close from unity, both results
establish unambiguously that the redox centers are extremely
mobile (energetically and dynamically) in their potential wells
and may easily achieve close contact at the very moment of
electron transfer.

Based on Equation (19), and Figure 2 the equivalent
molecular force constant k maintaining the redox centers in
their potential wells must be much less than 10ÿ20 J nmÿ2.
Using l� 10 nmÿ1, this imposes that z� 2l2kBT/k� 25 so that
from Equation (32), W� 10ÿ10. Conversely, using l� 5 nmÿ1,
imposes that z� 2l2kBT/k� 6 so that from Equation (32),
W� 3.5� 10ÿ2. Therefore the determination of the maximum
surfacic viscosity hS of one [Ru(tpy)2] molecule in its potential
well depends critically on the value used for l. Thus, one
obtains hS� 10ÿ20 N smÿ1 upon using l� 10 nmÿ1 or hS� 5�
10ÿ13 N smÿ1 upon using l� 5 nmÿ1. Let us compare these
values to that in solution. From the Nernst ± Einstein relation-
ship, an average solution diffusion coefficient of Dsoln� 5�
10ÿ6 cm2 sÿ1 for a molecule of radius rm in solution corresponds
to a volumic kinematic viscosity hV� kBT/(6pDsolnrm), that is,
to an apparent surfacic kinematic viscosity happ

s � hVrm� 5�
10ÿ13 N smÿ1. This value exceeds the maximum allowable
value of hS determined above. In other words, the mobility of
the redox centers on the spherical dendrimeric shell is much
larger than that of a free [Ru(tpy)2] molecule in solution. This
may be surprising at first glance since in a dendrimer the
[Ru(tpy)2] centers are connected to radial chains which ought
to rub against their neighboring chains to allow any significant
displacement of a [Ru(tpy)2] center. In our view this shows
that 1) there is no significant friction between the linkers, and
that 2) the dendrimer structure prevents the building-up of a

tight solvent and ionic atmosphere around the redox centers
as compared with dendrimers in solution.

Since the adsorbed dendrimer structure is more compact
than that of a free dendrimer molecule in solution because of
the requirement of f0� 2p/5, this result is a fortiori valid for
similar dendrimers in solution, regardless of the nature of the
chemically active center carried at the extremities of the
linkers. In other words, this implies that redox centers or
catalytic centers linked to a dendritic structure similar to that
considered here cross talk much more easily than the same
centers when they are free in solution at the same concen-
tration. This is an important effect to take into account for
example in the design of dendrimer-supported organometallic
catalysts,[23±35] since it establishes unambiguously the existence
of a stronger chemical cross-talk than in solution. For
example, bimolecular reactions between organometallics
catalytic centers that occur with difficulty in solution under
catalytic conditions may well become the dominant path when
the catalytic centers are supported on a dendritic structure.

Effect of the distribution of dendrimers on the voltammetric
oxidation wave

In the above treatment we have relied exclusively on the
variations of the voltammetric peak current intensity and
potential with the scan rate. However, comparison between
the simulated and experimental voltammograms (Figure 4)
shows that the predicted voltammetric peaks are sharper than
the experimental ones. This is also reflected by the fact that
when the dendrimer surfacic concentration is estimated from
the limit, (2.3�0.2)� 10ÿ10 V sÿ1Aÿ1, achieved by v/Ip in the
smaller scan rates range used in this study (Figure 6a), one
obtains NdeN0� (4.4� 0.5)� 10ÿ12 C, and since N0� 64 is
known by construction, Gd�Nd/(pr0

2NA)� (0.9� 0.2)�
10ÿ12 mol cmÿ2 (r0� 5.0� 0.5 mm). When Gd is estimated from
the charge consumed (from the surface area of the voltam-
metric peak) one obtains NdeN0� (12� 2)� 10ÿ12 C so that
Gd� (2.5� 0.4)� 10ÿ12 mol cmÿ2. Both values are consistent
with previous more precise determinations of Gd (3.5�
10ÿ12 mol cmÿ2)[8] made for the same dendrimer yet the second
evaluation is much closer than that based on the peak current,
especially considering that the surface of the platinum
electrode used here is much less defined than the electrodes
used previously.[8] In other words, it appears that the
experimental peak does not correspond to a simple summa-
tion of the current peaks due to Nd identical dendrimers, but
to the convolution of the individual currents due to a
population of different dendrimers.

Let us consider a distribution G(g) of dendrimers which
differ by the value of their oxidation potential in the adsorbed
state as compared to E0 in solution: E0

ads(g)�E0� g(RT/F).
Indeed, even assuming linearized isotherms (that is, GJ�
Gm

J [J]soln
0 exp(ÿDG0

J/RT), where [J]soln
0 is the solution concen-

tration of species J�Red,Ox at the interface, Gm
J its maximum

adsorbed surfacic concentration and DG0
J its standard free

energy of adsorption)[1, 51] for the reduced and oxidized forms
of the dendrimer, Equation (88) is valid at equilibrium of the
adsorbed phase when the electrode is set at potential E.

GRed/GOx� (Gm
Red/Gm

Ox�exp[(DG0
OxÿDG0

Red�/RT]([Red]soln
0 /[Ox]soln

0 � (88)
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Thus, for a Nernstian couple and n�ÿ1 (oxidation wave)
Equation (89) is valid, where E0

ads(g)�E0� g(RT/F) and g�
ln(Gm

Red/Gm
Ox�� (DG0

OxÿDGo
Red�/RT.

GRed/GOx� exp{F[E0
ads(g)ÿE]} (89)

Equation (89) shows that whenever the GJ
m and DG0

J values
differ for the oxidized and reduced forms, E0

ads(g) differs from
the solution formal potential E0. Whenever the distribution of
g values is not a Dirac function, the voltammetric wave
observed in case III-Nernstian for the whole population is
given by Equation (90), where x� (F/RT)(EÿE0) as defined
above, and G(g) is the normalized distribution (the integral of
G(g) from g� 0 to infinity is unity) of g values among the
whole population of dendrimers adsorbed on the electrode
surface.

I(x)/[NdN0e(Fv/RT)]�
Z�1

0

{exp(xÿ g)/[1� exp(gÿ x)]2}G(g)dg (90)

Figure 7a represents the experimental voltammetric peaks
observed at 0.036 and 0.072 MV sÿ1, that is, when case III-
Nernstian is achieved. This presentation eliminates the effect

of scan rate so that the two experimental peaks almost
coincide. Using the formulation in Equation (90), one may
extract the experimental G(g) distribution from these two set
of data. G(g) obeys closely a c2 distribution law (Figure 7b)
[Eq. (91)] with sg� 1.96, w� 0.41; u� 1.13 is the normal-
ization factor corresponding to these sg and w values.

G(g)� (u/2sg)(g/2sg)wexp(ÿg/2sg) (91)

The maximum of the G(g) distribution is observed at g0�
1.6, that is, to (DG0

OxÿDG0
Red� being in the range of about 4 kJ

molÿ1 if one assumes at this stage that ln(Gm
Red/Gm

Ox� is
comparatively negligible (sed vide infra). The above sg value
corresponds to about 5 kJ molÿ1 for the difference (DG0

Oxÿ

DG0
Red�. Both values establish that even if the distribution

significantly affects the voltammetric peak, it remains ex-
tremely narrow (ca., 10 %) in view of the adsorption energies
involved; for example, DG0

Red�ÿ (49� 1) kJ molÿ1 has been
determined previously for the adsorption of these dendrimers
on platinum electrodes.[8] Again, this conclusion compares
satisfactorily with the result of previous STM investigations
that have established that these dendrimers give rise to
perfectly ordered arrays.[7]

The same distribution [Eq. (91)] was applied to the
voltammetric peaks obtained at faster scan rates. This
produced reconstructed theoretical voltammetric peaks which
compare extremely well with the experimental ones, although
only for the lower and upper ranges of scan rates used in this
study (v< 0.2 MV sÿ1, or v> 1.5 MV sÿ1), that is, when the
system has reached case III-Nernstian or case I (total charge
transfer control). In the intermediate range, one observes a
slight but systematic discrepancy between the experimental
and reconstructed theoretical voltammograms. In our view,
this reflects that the value of g affects to some extent the way
by which the system transits from case III-Nernstian to case
I-slow charge transfer. In other words, the distribution of g

values slightly affects the val-
ue of kS but does not affect
Dhop and f0 in a significant
fashion.

Regarding Dhop this ap-
pears to be a reasonable re-
sult since this parameter de-
rives from events that primar-
ily occur far from the
electrode surface and there-
fore characterize the dynam-
ics of the redox centers on the
dendrimer shell. This result is
also reasonable for f0 since,
owing to the large adsorption
energy of dendrimers
(DG0

Red�ÿ 50 kJ molÿ1),[8]

the effect of the comparative-
ly small distribution of
(DG0

OxÿDG0
Red�, that is,

5 kJ molÿ1, is expected to
have an extremely modest
effect on the geometry of

the surface of contact between the electrode and the
dendrimer (ca. 10 nm diameter for f0� 2p/5 and R0� 5 nm).
Also, it is rational that even a slight change in adhesion of a
dendrimer affects kS, the heterogeneous rate of electron
transfer, since this rate constant is closely related to the
coupling between the electrode and the redox centers close to
it. However, the effect is modest and shows up mostly in the
intermediate range of scan rates where the system experiences
a transition between Nernstian and slow charge transfer
regimes. From the experimental data obtained in this
intermediate range of scan rates, one can extract the
distribution of kS. This was not attempted because the
effect is extremely modest (sks/kS< 20 %) compared to that
due to g.

Figure 7. Effect of a population of dendrimers on the overall voltammetric anodic peak observed at the slowest
scan rates when the case III-Nernstian kinetic conditions (see Table 1) are obeyed. a) Experimental data
corrected from the background base line (circles: v� 0.036 MV sÿ1; triangles, v� 0.072 MV sÿ1). The thick solid
line is the predicted behavior for the population distribution shown by the solid curve in b), while the dashed line
is that predicted for a monodisperse distribution (g0� 1.6), viz. , for G(g)� d(gÿ 1.6) where d is the Dirac function
(see text for the definition of g). b) Solid curve: c2 distribution of the dendrimer population (reduced state) as a
function of g [Eq. (91)] with sg

an� 1.96, wan� 0.41; uan� 1.13); the maximum of Gan(g) corresponds to g0
an� 1.6

and Gan(g0
an)� 0.133. Dashed curve: c2 distribution of the dendrimer population (oxidized state) as a function of

g�j gcath j [Eq. (91)] by permuting g into jgcath j with sg
cath� 1.67, wcath� 0.41; ucath� 1.13); the maximum of Gcath(g)

corresponds to g0
cath�ÿ1.4, Gcath(jg0

cath j )� 0.156.
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Meaning of DEp

Equation (89) predicts an apparent shift of the voltammetric
wave with respect to the E0 value in solution. However,
whenever the G distribution does not change upon full
oxidation of the adsorbed dendrimers, an identical potential
shift should be observed for the reduction wave. In other
words, when case III-Nernstian is achieved, both waves should
be enlarged and shifted identically with respect to E0 due to
the common distribution of g values, so that they should
remain centered around E0

ads(g0) and DEp should be nearly
zero under the case III-Nernstian regime. This is clearly not
the case since DEp remains about 80 mV down to very slow
scan rates (v< 100 mVsÿ1).[6] Furthermore, Figure 5b shows
that the experimental DEp variations versus v are closely
reproduced by the theory over the entire range of scan rates
used here provided that a constant DEp� 80 mV is added to
the theoretical prediction (note that the two points at the
highest scan rates deviate because of filtering by the
potentiostat and imperfect ohmic drop compensation above
2 MV sÿ1). This suggests that the two populations of den-
drimers (viz. , the completely reduced one versus. the com-
pletely oxidized one) experience different G distributions.

The fact that the adsorption behavior differs for the two
populations of reduced or oxidized dendrimers is also
evidenced by the comparison of the anodic and cathodic
voltammetric peaks. Indeed, at the lowest scan rates used
here, where the case III-Nernstian regime prevails, the
cathodic current peak is about 20 % less than the anodic
one. One determines a comparable diminution of coverage
(ca. 25 %) upon considering the relative surface areas of the
two voltammetric peaks. Neglecting the possible involvement
of charge trapping effects,[6, 54±57] these numbers reflect that in
the fully oxidized state the surfacic concentration of den-
drimers is about 25 % less than that observed in the fully
reduced state and that the G distribution is narrower for the
fully oxidized state since the diminution in peak current
intensity is smaller than that deduced from the area under the
peak.

This is a clear indication that one is confronted with a phase
transition. One phase prevails when the dendrimers are in
their RuII redox state (this is the one that controls the anodic
peak), and another phase prevails when the dendrimers are in
their RuIII redox state (this is the one that controls the
cathodic peak). Each phase has its own Gm value and G(g)
distribution. In the following we thus indicate by a superscript
'II' or 'III' the values which pertain to the corresponding
phase. The above analysis applies therefore to the RuII phase
which corresponds then to Gd

II� (2.5� 0.4)� 10ÿ12 mol cmÿ2,
and obeys a GII(g) c2 distribution ([Eq. (91)], Figure 7, solid
curve) with a maximum at g0

II� 1.6, and sg
II� 1.96, wII� 0.41,

and uII� 1.13. The same treatment applied to the RuIII phase
(that is, based on the treatment of the cathodic peak,
data not shown) shows that Gd

III� 0.75Gd
II� (2.0� 0.3)�

10ÿ12 mol cmÿ2. It also obeys a c2 distribution, GIII(jg j )
([Eq. (91)], Figure 7, dashed curve), with its maximum at
g0

III�ÿ1.4, and sg
III�ÿ1.67, wIII� 0.41, and uIII� 1.13. Based

on the above analysis, the peak-to-peak separation between
the anodic and cathodic voltammetric waves is then given by

DEp�RT(g0
IIÿ g0

III)/F. Since g0
IIÿ g0

III� 3, the value is pre-
dicted to be 76 mV, which compares extremely well to the
experimental one of (80� 5) mV.

Based on the g0
III value determined for the RuIII-phase, one

determines (DG0
OxÿDG0

Red�III to be about ÿ3.5 kJ molÿ1, that
is, of similar magnitude to (DG0

OxÿDGo
Red�II� 4 kJ molÿ1

determined above for the RuII-phase but with the opposite
sign. Note that in the determination of (DG0

OxÿDG0
Red�II/III we

neglected the contribution of the ln(Gm
Ox/Gm

Red�II or ln(Gm
Ox/

Gm
Red�III terms in each phase since we have no way to determine

them at present. However, since (Gm
Ox�III/(Gm

Red�II� 0.75 one
expects that Gm

Ox/Gm
Red is even closer to unity in each phase so

that the resulting error should be negligible and, in any case,
much lower than the widths of each distribution as deter-
mined from the corresponding sg values (about 5 and
ÿ4.5 kJ molÿ1 for the RuII and RuIII phases respectively). In
other words, the oxidized dendrimer molecules are more
strongly adsorbed than their reduced form in the fully
oxidized RuIII phase, while the reverse is observed in the
fully reduced RuII phase.

Such a phase transition is expected for highly ordered
arrays such as those produced by these dendrimers.[7] Indeed,
because of electroneutrality, full oxidation of one dendrimer
molecule requires the presence of 64 BF4

ÿ anions from the
supporting electrolyte around the dendrimer shell. This
suffices to give a about 5 % increase in its apparent radius.
However, dipole ± dipole repulsions then occur between
adjacent oxidized dendrimers so that the apparent increase
in radius must be larger than this number in order to allow
adequate screening of electrostatic repulsions by the ionic
atmosphere. Both phenomena may then very well account for
the overall apparent increase by about 10 ± 15 % of the radius
(note that such an increase in radius results in an increase in
area of about 25 % which, in turn, is reflected in a similar
diminution in the surface coverage). The resulting increase in
radius explains, therefore, why the highly ordered array of the
RuII phase resists the insertion of oxidized dendrimers into it.
Similarly, reduction taking place within a highly ordered array
of oxidized dendrimers in the RuIII phase should require
energy to compensate the creation of an uncovered area of the
electrode in the middle of the RuIII array. This suggests that
(DG0

OxÿDG0
Red�II or (DG0

OxÿDG0
Red�III do not reflect varia-

tions of binding energies between the dendrimers and the
electrode surface, but rather, the energetics of the defects
created in either ordered array by the creation of dendrimer
molecules of a different redox state.

The maximum interaction between adjacent sites in either
array is expected to occur at the level of the equatorial planes
of the adsorbed dendrimers. Since f0� 2p/5, the dendrimers
rest nearly on their equatorial plane (compare Figure 1b) so
that such repulsions are expected to occur at near maximum
strength as soon as only a few percent of the redox sites borne
by a dendrimer have changed redox state. This explains
therefore a posteriori why Dhop and f0 are almost unaffected
by the distribution of g, and why kS is only slightly affected.
Similarly, this also explains why one needs to add the same
constant term (80 mV) to the predicted DEp

th values irre-
spective of the scan rate in order to reconcile the predicted
and experimental DEp (Figure 5b).
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The existence of two different phases requires that the
population of adsorbed dendrimer must experience phase
transitions upon oxidation/reduction cycles. Previous inves-
tigations by quartz microbalance (though with ClO4

ÿ support-
ing electrolyte anion instead of BF4

ÿ used here) clearly
established the occurrence of a perfectly reproducible mass
hysteresis during the oxidation/reduction cycles.[6] The mass
mid-point transition occurred near the end of the voltam-
metric peak during the anodic scan (v� 50 mVsÿ1), while it
occurred in conjunction with the reduction peak during the
cathodic scan. This behavior is consistent with different
(DG�

OxÿDG�
Red� values in each phase as inferred from the

present analysis.
In our view, this conclusion explains, also a posteriori, the

experimental observation that we made with the amorphous
electrodes used in this study compared to what occurs on
much better defined platinum surfaces.[6±8] Indeed, as ex-
plained before, we noted that the electrode needed to be
cycled numerous times before sharp voltammetric signals
could be observed. In fact, the first voltammetric cycles gave
rise to rather sluggish anodic and cathodic waves, which
progressively sharpened upon cycling to yield, reproducibly,
those shown and used here. When this final reproducible state
was achieved, the voltammetric system did not evolve with
time except when the electrode was repolished. So each
voltammogram presented and used here was obtained in a
single scan mode after this pretreatment and yielded repro-
ducible results from run to run. In view of what has been
described above, one may then consider that when a fresh
polished surface is introduced into the dendrimer solution,
dendrimers (in their reduced form) adsorb kinetically onto
the amorphous platinum electrode surface. This may well lead
to a series of kinetic microdomains characterized by their own
g0

II and sg
II values so that the first voltammetric waves

observed appear sluggish. Upon cycling continuously anodi-
cally and cathodically the electrode, one anticipates contin-
uous desorption-adsorption cycles to occur because of the
alternative change of sign in (DG�

RedÿDG�
Red� since the active

phase in each half-cycle differs. This continuous desorption ±
adsorption process is then expected to ºannealº the initial
broad distribution by imposing ultimately a thermodynamic
situation, so that the distribution of g values should sharpen so
as to give, ultimately, those presented in Figure 7b.

Conclusion

We have shown here, thanks to the possibility of performing
cyclic voltammetry in the megavolt-per-second range of scan
rates, that the extension of a diffusion layer can be tuned to fit
precisely the nanometric dimensions of an electroactive nano-
object. In this study we applied this ultrafast voltammetric
method to the study of electron-hopping diffusion within a
dendrimer structure bearing redox sites on its external shell.
Owing to the topology of such particular structure the
voltammetric behavior of such objects obey new specific

diffusional patterns that reflect the specific topological
arrangement of the redox sites onto the dendrimer shell.
These specific behaviors complicate significantly the voltam-
metric analysis, yet in return they afford a precise description
of the shape of the adsorbed dendrimers. This is a unique
result which could not be achieved by STM or atomic force
microscopy (AFM) exploration of the same system, since
either method gives access to only that part of the adsorbed
globule that is exposed to the solution,[7] in this case, above the
equatorial plane of the adsorbed dendrimers. Conversely, the
ultrafast voltammetric investigation affords a precise descrip-
tion of the region facing the electrode, that is, of the part
located below the equatorial plane. It was thus established
that the contact area between the dendritic structure and the
electrode is quite large, which is in agreement with the large
adsorption energies reported previously by some of us.[8] In
fact, the adsorbed dendrimer structure is then distort-
ed[36±38] and resembles more closely a hemisphere resting onto
the electrode than a spherical globule as it should be in
solution (Figure 1b). In our view this ability to pro-
vide a sound topological information is a new and unique
property of voltammetric exploration of electroactive nano-
objects.

Besides such topological information, the voltammetric
investigation gave access to the measurement of the electron-
transfer self-exchange rate constant between the [RuII/
RuIII(tpy)2] redox sites borne by the dendritic structure.
Surprisingly, we observed this rate constant to be comparable
with electron transfer occurring between redox centers in
contact, albeit the average distance between their centers is
about 2 nm. This indicates that the redox centers are
extremely mobile around their equilibrium position. The
model that has been developed here establishes that this may
occur only if the kinematic viscosity of the centers is smaller
than that of the same centers in solution. This highlights the
extreme mobility of dendritic structures and the extremely
facile cross-talk between centers borne by dendrimers similar
to that studied here. This important effect which to the best of
our knowledge has never been shown before needs to be
taken into account in the design of dendrimer-supported
organometallic catalysts,[23±35] since this may induce different
mechanistic paths than those observed for the same homoge-
neous catalytic centers.

Finally, the knowledge of the independent behavior of each
dendrimer unit has allowed the statistical treatment of the
whole population of dendrimers adsorbed onto the electrode
surface. Interestingly this part of our study allowed us to
establish that a rather narrow distribution may nevertheless
affect considerably the shape of the voltammetric waves vis a
vis a monodisperse population. In particular, the simple
model developed here easily accounts for the existence of the
potential difference between the anodic and cathodic peak at
small scan rates by an energetic hysteresis due to the fact that
each given array of adsorbed dendrimers, that is, an arrray of
reduced or oxidized molecules, accepts with considerable
difficulty a redox change of its components. To the best of our
knowledge this is the first time that such phenomenon has
been properly identified by electrochemistry of bidimension-
nal arrays.
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Experimental Section

The dend-64-[RuII/RuIII(tpy)2] dendrimer investigated in this study (see
Scheme 1) was synthesized and characterized according to reported
procedures.[6±8]

The home-made ultrafast potentiostat equipped with feedback electronic
compensation used in this study has been described in full details
elsewhere.[4] Its bandpass in the full compensation mode resulted in no
significant distortion of the voltammograms up to 2 MVsÿ1.[4] Above this
scan rate the potentiostat introduced slight distortions of the voltammetric
peaks (compare Figure 5b).[4] Under this scan rate it introduced only a
constant time lag of 20 ns that was eliminated by numerical shift of the
digitally recorded current-times curves.[4]

The three-electrode electrochemical cell (0.3 mL) and other electronic
apparatus used in this study were identical to those previously reported.[4]

The working electrode was a platinum disk of 5.0� 0.5 mm radius made by
the cross-section of a platinum wire (Goodfellow) of 5 mm nominal radius
sealed into soft glass, polished and calibrated according to reported
procedures.[58] It was polished on alumina 0.3 mm (Presi) before use. The
counter electrode was a platinum wire and the reference electrode a
floating pseudoreference electrode as described elsewhere.[4] The size of the
three electrodes and of their leads were critical so the cell was mounted
directly into the potentiostat board to minimize the stray capacitances.[4]

The cell was filled with 0.25 mL of a saturated solution of the dend-64-
[RuII/RuIII(tpy)2] dendrimer[6±8] in acetonitrile, distilled before use and
stored under argon, and containing 0.6m NEt4BF4 (Aldrich) that was dried
under vacuum for 3 h prior to the experiment. During all experiments, the
cell was kept under an argon blanket.

The first voltammetric scans with a freshly polished electrode gave broad
voltammetric cycles. However, cycling the electrode anodically and
cathodically progressively resulted in reproducible sharper voltammetric
peaks. After this preparation phase of the electrode, there was no need to
reproduce this pretreatment unless the electrode was disconnected from
the cell and polished again. Each voltammogram used here (Figure 4) was
obtained in the single scan mode. Five (v >0.1 MVsÿ1) or 20 (v�
0.1 MV sÿ1) independent voltammograms were averaged to increase the
signal-to-noise ratio without introducing any significant distortion of the
voltammetric waves.

All the programs developed in this work were written in language C�� and
ran on a PC-Pentium 333 MHz. They were built using classical implicit
finite difference algorithms,[59] based on the dimensionless system of
Equations (40), (42), (71) ± (73) . The current was then obtained by
application of Equation (76). The programming was classical for such
implicit algoritms except for a very critical point related to the value of the
mesh of the space grid. For this, for any given value of f0, b [Eq. (75)] and L

[Eq. (76)] the maximum extent of the diffusion layer was roughly estimated
by application of hdiff� 5/Y(xmax) based on the theoretically predicted
limiting dimensionless currents Y derived analytically in this work and on
the schematic zone diagram shown in Figure 3a. The ensuing diffusion layer
was then equally separated into 50 space elements to define the mesh grid
for the calculations. It was checked that increasing hdiff by a factor two to
five while keeping the same space interval did not resulted in any
noticeable change of the computed dimensionless current. When, hdiff

exceeded the value hp=2
diff corresponding to f�p/2, the calculation was

performed with two connected space grids. For h� hp=2
diff (viz. , for f0�f�

p/2) the calculation was performed in the h space [Eq. (39)] and the
diffusion equation was Equation (40) with D* defined as in Equation (42).
For f>p/2, the calculations were performed directly into the f space to
save computation time, so that Equation (35) was solved instead. The
interconnection between the two spaces was ensured by forcing continuity
conditions on f and qf/qh (viz. , qf/qh� (qf/qf)(bsinf)/2, viz., qf/qh�b(qf/
qf)/2 at p/2) at h� hp=2

diff (viz. , at f�p/2). The validity of the program was
tested by forcing extreme conditions on f0 , L, or b, so that the system was
shifted in any of the six limiting cases delineated in this study, and by
checking then that it produced then the appropriate predicted limiting
dimensionless currents within a precision better than 0.1 %. This ensured
that the simulations were performed with an excellent precision in the
general case and in any transition between limiting behavior (Figure 3) as
well as under any conditions required for the analysis of the present
experimental data.
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